AdvancedSearch
BAO Chongxi, SUN Zeyu, FENG Weili, CAI Lishan. Effect of phosphorus and carbon mass fractions on microstructure and properties of PM high manganese non-magnetic steels[J]. Powder Metallurgy Technology, 2024, 42(5): 464-470. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030012
Citation: BAO Chongxi, SUN Zeyu, FENG Weili, CAI Lishan. Effect of phosphorus and carbon mass fractions on microstructure and properties of PM high manganese non-magnetic steels[J]. Powder Metallurgy Technology, 2024, 42(5): 464-470. DOI: 10.19591/j.cnki.cn11-1974/tf.2024030012

Effect of phosphorus and carbon mass fractions on microstructure and properties of PM high manganese non-magnetic steels

More Information
  • Corresponding author:

    BAO Chongxi, E-mail: cxbao@pm-china.com

  • Received Date: March 24, 2024
  • Accepted Date: March 24, 2024
  • Available Online: October 08, 2024
  • Fe–Mn–P–C non-magnetic steel balance block parts were prepared by pressing-sintering method by adding Fe3P powders and graphite powders in different mass fraction to the high manganese steel alloy powders. The effects of phosphorus and carbon content on the microstructure and properties of high manganese non-magnetic steels were studied, and the properties of Fe–Mn–P–C high manganese steels and Fe–Mn–Cu–C high manganese steels were compared. The results show that, the non-magnetic high manganese steels with the uniform structure can be prepared by adding Fe3P powders to the high manganese steel powders. The density and hardness of the sintered parts increase with the increase of Fe3P content. When the Fe3P mass fraction exceeds 2%, the density of sintered parts remains basically unchanged. The hardness of sintered parts with 3% Fe3P is the highest, reaching about HRB 95. When the Fe3P mass fraction is less than 1%, the sintered part shows no magnetic characteristics; when the Fe3P mass fraction is 2%, the sintered part shows the weak magnetic characteristics; when the Fe3P mass fraction is 3%, the sintered part shows the strong magnetic characteristics. The density and hardness of sintered parts increase with the increase of graphite content. When 0.30% graphite is added, the density of sintered parts exceeds 7.30 g∙cm−3. When the graphite mass fraction is less than 0.30%, the sintered part shows no magnetic characteristics; when the graphite mass fraction is 0.60%, the sintered part shows the weak magnetic characteristics; when the graphite mass fraction is 0.75%, the sintered part shows the strong magnetic characteristics. Compared with the Fe–Mn–Cu–C high manganese steels, the density of Fe–Mn–P–C high manganese steels is relatively low, and the hardness and magnetism are equivalent, but the mechanical properties are better than that of the Fe–Mn–Cu–C high manganese steels.

  • [1]
    高莹, 顾毅, 吴艺辉, 等. 铁锰无磁合金粉的水雾化法生产工艺研究. 粉末冶金技术, 2018, 36(6): 465

    Gao Y, Gu Y, Wu Y H, et al. Research on production technology of nonmagnetic Fe–Mn alloy powders by water atomization. Powder Metall Technol, 2018, 36(6): 465
    [2]
    李长生, 马彪, 宋艳磊, 等. 无磁钢的研究概况和我国无磁钢的发展思路. 河南冶金, 2014, 22(1): 1

    Li C S, Ma B, Song Y L, et al. The research progress and development ideas of non-magnetic steels in China. Henan Metall, 2014, 22(1): 1
    [3]
    赵培峰, 国秀花, 宋克兴. 高锰钢的研究与应用进展. 材料开发与应用, 2008, 23(4): 85

    Zhao P F, Guo X H, Song K X. Research and application development of high manganese steel. Dev Appl Mater, 2008, 23(4): 85
    [4]
    Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr Opin Solid State Mater Sci, 2011, 15(4): 141 DOI: 10.1016/j.cossms.2011.04.002
    [5]
    包崇玺, 李玉柱, 冯伟立. 无磁性粉末冶金零件的制造方法以及应用: 中国专利, 201811564945.0. 2018-12-20

    Bao C X, Li Y Z, Feng W L. Method for Manufacturing Non-Magnetic Powder Metallurgy Parts and Its Applications: China Patent, 201811564945.0. 2018-12-20
    [6]
    曾艳玲. 高锰无磁钢护环锻造特点及锻造工艺. 锻压技术, 2013, 38(3): 12

    Zeng Y L. Forging characteristics and process of high manganese non-magnetic steel retaining ring. Forg Stamp Technol, 2013, 38(3): 12
    [7]
    Hryha E, Dudrova E, Nyborg L. Critical aspects of alloying of sintered steels with manganese. Metall Mater Trans A, 2010, 41: 2880 DOI: 10.1007/s11661-010-0357-5
    [8]
    Cazzolli M, Menapace C, Perina M, et al. Microstructure and tensile properties of Hadfield steel produced by MIM. Powder Inject Mould Int, 2012, 6(4): 76
    [9]
    Schroeder R, Filho A I R, Binder C, et al. Adjusting the sintering cycle of a Hadfield sintered steel produced by metal injection molding. Mater Res, 2015, 18(Suppl 2): 83 DOI: 10.1590/1516-1439.347114
    [10]
    王兴民. 压缩机平衡块粉末冶金制做工艺方法: 中国专利, 201210043697. 2012-07-04

    Wang X M. Manufacturing Process of Powder Metallurgy for Compressor Balance Block: China Patent, 201210043697. 2012-07-04
    [11]
    肖志瑜, 贾善权, 关航健, 等. 一种高密度无磁钢平衡块零件及其制备方法: 中国专利, 201610966885. 2016-10-28

    Xiao Z Y, Jia S Q, Guan H J, et al. A High-Density Non-Magnetic Steel Balance Weight Part and Preparation Method: China Patent, 201610966885. 2016-10-28
    [12]
    柳睿, 包崇玺, 周国燕, 等. 碳含量和烧结参数对烧结高锰钢组织与性能的影响//2015年全国粉末冶金学术会议暨海峡两岸粉末冶金技术研讨会. 武汉, 2015: 267

    Liu R, Bao C X, Zhou G Y, et al. Influence of carbon content and sintering parameters on the microstructure and properties of high manganese sintered steel // 2015 National Powder Metallurgy Academic Conference and Cross-Strait Powder Metallurgy Technology Seminar. Wuhan, 2015: 267
    [13]
    Šalak A, Selecká M. Adverse effect of high purity atmosphere on sintering of manganese steels. Powder Metall, 2010, 53(4): 285 DOI: 10.1179/003258910X12707304455185
    [14]
    Lynn J, Rosa P, Meyerlll H, et al. Ductile components of phosphorous-alloyed P/M steel // 2005 Advances in Powder Metallurgy & Particulate Materials. Montreal, 2005: 1399
    [15]
    Lindskog P, Tengzelius J, Kvist S A. Phosphorus as an alloying element in ferrous P/M. Mod Dev Powder Met, 1977, 10: 98
    [16]
    长崎诚三, 平林真. 二元合金状态图集. 刘安生译. 北京: 冶金工业出版社, 2004: 153

    Nagasaki M, Hirahara T. Collections of Binary Alloy Phase Diagrams. Transl by Liu A S. Beijing: Metallurgical Industry Press, 2004: 153
  • Related Articles

    [1]QIU Yue, HE Yihai, WANG Yifu, LIN Shaochuan, KONG Hui, WANG Rui. Influence of heat treatment on performance of Fe−6.5%Si magnetic powder core[J]. Powder Metallurgy Technology, 2024, 42(2): 177-183. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120001
    [2]The effect of heat treatment on the microstructure and mechanical properties of Ti2AlC/Inconel 718 composite material formed by Selective Laser Melting[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040003
    [3]WANG Jie, HUANG Hailiang, ZHANG Hua, ZHANG Shangzhou, ZHOU Xin, JIANG Liang. Microstructure evolution of FGH96 alloys during heat treatment[J]. Powder Metallurgy Technology, 2023, 41(5): 393-401. DOI: 10.19591/j.cnki.cn11-1974/tf.2023050008
    [4]XIAO Meng, YAN Zhi-qiao, LI Jian, MAO Xin-hua, LIU Xin. Fabrication of spherical WC–Co powders by radio frequency plasma and heat treatment[J]. Powder Metallurgy Technology, 2021, 39(5): 439-444. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040003
    [5]ZHU Xue-chao, WEI Qing-song, SUN Chun-hua. Study on microstructures and properties of S136 die steel formed by selective laser melting after heat treatment[J]. Powder Metallurgy Technology, 2019, 37(2): 83-90. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.02.001
    [6]HE Ming-tao, MENG Hui-min, WANG Yu-chao, REN Peng-wei. Study on preparation and heat treatment process of LaMgAl11O19 spray powder[J]. Powder Metallurgy Technology, 2018, 36(5): 370-376. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.05.009
    [7]Niu Liankui, Zhang Yingcai. Pre-heat Treatmeant PREP FGH95 Powders[J]. Powder Metallurgy Technology, 1998, 16(2): 101-107.
    [8]Li Qingquan, Tong Lirong, Xu Qingzhou, Ma Runhai, Ouyang Tong, Tian Xiaoshu. RELATIONS BETWEEN MAGNETIC PROPERTIES OF GAS ATOMIZED NdFeB POWDER AND HEAT TREATMENT TECHNOLOGY[J]. Powder Metallurgy Technology, 1996, 14(4): 259-267.
    [9]Dong Yi, Qi Xin, Zhang Xuemei. PROPERTIES AND STRUCTURE OF HEAT TREATED COPPER-INFILTRATED SINTERED STEEL[J]. Powder Metallurgy Technology, 1996, 14(2): 122-126.
    [10]Cao Fang. EXPERIMENTS OF HEAT—TREATMENT OF P/M MATERIALS[J]. Powder Metallurgy Technology, 1993, 11(2): 110-114.

Catalog

    Article Metrics

    Article views (326) PDF downloads (26) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return