AdvancedSearch
ZHONG Tao, GUO Rongzhen, LIN Xiaochuan, LIU Longting, WANG Jiaxin, XU Zhiqiang, GUO Shibo. Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials[J]. Powder Metallurgy Technology, 2024, 42(6): 582-588. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040013
Citation: ZHONG Tao, GUO Rongzhen, LIN Xiaochuan, LIU Longting, WANG Jiaxin, XU Zhiqiang, GUO Shibo. Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials[J]. Powder Metallurgy Technology, 2024, 42(6): 582-588. DOI: 10.19591/j.cnki.cn11-1974/tf.2024040013

Effect of plasma sintering process on the mechanical properties of WC/Cr3C2/La2O3 cutting tool materials

More Information
  • Corresponding author:

    GUO Shibo, E-mail: guoshibo163@163.com

  • Received Date: April 17, 2024
  • Available Online: May 22, 2024
  • To solve the problem of adhesive phase wear for the traditional cemented carbide tools in the high-speed cutting process, the WC/Cr3C2/La2O3 tool materials were prepared by spark plasma sintering (SPS). The effects of Cr3C2 addition amount (mass fraction, 0%~2.00%) and process parameters (sintering temperature 1500~1700 ℃ and sintering pressure 15~45 MPa) on the microstructure and mechanical properties of the tool materials were studied. The results show that, the optimum Cr3C2 content is 0.50%, and the WC/Cr3C2/La2O3 cemented carbide sintered at 1550 ℃ and 25 MPa has the best comprehensive properties as the relative density, bending strength, and Vickers hardness are 97.5%, 1281.0 MPa, and HV 2124.3, respectively. With the increase of sintering temperature, the relative density increases and the microstructure becomes more even for the WC-based tool materials. However, too high temperature leads to the abnormal growth of grains, the uneven distribution of microstructure, more porosity, and the lower mechanical properties. As the sintering pressure increases, the grain size reduces, the microstructure becomes more even, and the mechanical properties increase. While the sintering pressure is above 25 MPa, the mechanical properties of tool materials decrease.

  • [1]
    龙坚战, 陆必志, 易茂中, 等. 新型粘结相硬质合金的研究进展. 硬质合金, 2015, 32(3): 204

    Long J Z, Lu B Z, Yi M Z, et al. Research progress on cemented carbide with novel binders. Cement Carb, 2015, 32(3): 204
    [2]
    薛艺, 田青超. 硬质合金切削刀具研究进展. 材料导报, 2019, 33(S1): 353

    Xue Y, Tian Q C. Research progress on cemented carbide cut tools. Mater Rep, 2019, 33(S1): 353
    [3]
    董丽丽, 张宁, 王磊, 等. WC‒10Co硬质合金刀具材料超低温处理研究. 稀有金属与硬质合金, 2019, 47(3): 86

    Dong L L, Zhang N, Wang L, et al. Study on deep cryogenic treatment of WC‒10Co cemented carbide as cutting tool material. Rare Met Cement Carbi, 2019, 47(3): 86
    [4]
    刘胤, 王金星, 张德玉, 等. TiAlN涂层硬质合金刀具铣削4J32低膨胀合金的磨损机理分析. 工具技术, 2019, 53(9): 47 DOI: 10.3969/j.issn.1000-7008.2019.09.011

    Liu Y, Wang J X, Zhang D Y, et al. Wear mechanism analysis of TiALN coated carbide cutter in milling of 4J32 low expansion alloy. Tool Eng, 2019, 53(9): 47 DOI: 10.3969/j.issn.1000-7008.2019.09.011
    [5]
    邹芹, 李爽, 李艳国. 无粘结相WC硬质合金的研究进展. 硬质合金, 2021, 38(4): 297 DOI: 10.3969/j.issn.1003-7292.2021.04.010

    Zou Q, Li S, Li Y G. Research progress of binderless WC tungsten carbide. Cement Carb, 2021, 38(4): 297 DOI: 10.3969/j.issn.1003-7292.2021.04.010
    [6]
    郑清艺. 超细WC‒Ni网状结构硬质合金的制备与性能研究[学位论文]. 大连: 大连理工大学, 2017

    Zheng Q Y. Study on Preparation and Characterization of Ultrafine WC‒Ni Cellular Cemented Carbide [Dissertation]. Dalian: Dalian University of Technology, 2017
    [7]
    Zhang Z Z, Chen Y B, Zuo L L, et al. The effect of volume fraction of WC particles on wear behavior of in-situ WC/Fe composites by spark plasma sintering. Int J Refract Met Hard Mater, 2017, 69: 196 DOI: 10.1016/j.ijrmhm.2017.08.009
    [8]
    Marek T, Jakob K, Kristjan J, et al. Ferritic chromium steel as binder metal for WC cemented carbides. Int J Refract Met Hard Mater, 2018, 73: 183 DOI: 10.1016/j.ijrmhm.2018.02.010
    [9]
    胡涛, 胡忠举, 郭世柏, 等. 无粘结相WC基硬质合金刀具材料的研究现状与前景. 工具技术, 2019, 53(2): 7 DOI: 10.3969/j.issn.1000-7008.2019.02.002

    Hu T, Hu Z J, Guo S B, et al. Research progress of WC-based cemented carbide cutting tool materials without bonding phase. Tool Eng, 2019, 53(2): 7 DOI: 10.3969/j.issn.1000-7008.2019.02.002
    [10]
    Qu H X, Zhu S G. Two step hot pressing sintering of dense fine grained WC–Al2O3 composites. Ceram Int, 2013, 39(5): 5415 DOI: 10.1016/j.ceramint.2012.12.049
    [11]
    陈国清, 任媛媛, 付雪松, 等. SiCw对WC‒ZrO2材料微观组织及力学性能的影响. 现代技术陶瓷, 2019, 40(3): 191

    Chen G Q, Ren Y Y, Fu X S, et al. Effect of SiCW on the microstructure and mechanical properties of WC‒ZrO2. Adv Ceram, 2019, 40(3): 191
    [12]
    易正翼. 无粘结相(W, Mo)C/Al2O3/La2O3材料的制备及其微织构摩擦磨损性能研究[学位论文]. 湘潭: 湖南科技大学, 2020

    Yi Z Y. Preparation of (W, Mo)C/Al2O3/La2O3 Materials Without Bonding Phase and Its Microtexture Friction and Wear Properties [Dissertation]. Xiangtan: Hunan University of Science and Techology, 2020
    [13]
    王永. 纯碳化钨的制备工艺与性能[学位论文]. 成都: 西南交通大学, 2014

    Wang Y. Preparation and Properties of Pure Tungsten Carbide [Dissertation]. Chengdu: Southwest Jiaotong University, 2014
    [14]
    Sun S K, Zhang G J, Wu W W, et al. Reactive spark plasma sintering of binderless WC ceramics at 1500 ℃. Int J Refract Met Hard Mater, 2014, 43: 42 DOI: 10.1016/j.ijrmhm.2013.10.013
    [15]
    Taimatsu H, Sugiyama S, Komatsu M. Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC‒SiC whisker ceramics. Mater Trans, 2009, 50(10): 2435 DOI: 10.2320/matertrans.M2009169
    [16]
    Ren X Y, Peng Z J, Wang C B, et al. Influence of nano-sized La2O3 addition on the sintering behavior and mechanical properties of WC‒La2O3 composites. Ceram Int, 2015, 41(10): 14811 DOI: 10.1016/j.ceramint.2015.08.002
    [17]
    Poetschke J, Richter V, Holke R. Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide. Int J Refract Met Hard Mater, 2012, 31: 218 DOI: 10.1016/j.ijrmhm.2011.11.006
    [18]
    王彬, 陈睿智, 李剑峰, 等. 放电等离子烧结制备无粘结相SiCw/WC硬质合金. 粉末冶金技术, 2023, 41(1): 38

    Wang B, Chen R Z, Li J F, et al. Preparation of binderless SiCW/WC cemented carbides by spark plasma sintering. Powder Metallu Technol, 2023, 41(1): 38
    [19]
    王倩玉, 秦明礼, 吴昊阳, 等. 新型纳米晶硬质合金的研究现状及发展趋势. 粉末冶金技术. 2022, 40(4): 362

    Wang Q Y, Qin M L, Wu H Y, et al. Research status and development trend of new nanocrystalline cemented carbides. Powder Metall Technol, 2022, 40(4): 362
    [20]
    黄丽蓉, 王云, 谢俊杰, 等. 超声振动辅助压制粗晶WC‒10Co硬质合金. 粉末冶金技术. 2023, 41(6): 586

    Huang L R, Wang Y, Xie J J, et al. Pressing the coarse-grained WC‒10Co cemented carbide assisted by ultrasonic vibration. Powder Metall Technol, 2023, 41(6): 586
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010
    [3]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [4]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [5]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [6]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [7]GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(1)

    1. 鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (581) PDF downloads (50) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return