Citation: | JIANG Huangyong, SUN Zeyu, CHEN Zhidong, ZHANG Chen, CHEN Bing, BAO Chongxi. Effect of hyperbranched polyester binders on properties of Fe–Fe3P bonding mixed powders[J]. Powder Metallurgy Technology, 2024, 42(5): 489-496. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050019 |
Fe–Fe3P adhesive premixed powders were prepared by using hyperbranched polyester as the binders. The microstructure of the powders was observed by scanning electron microscope. The effect of hyperbranched polyester binder content (mass fraction) on the properties of the Fe−Fe3P powder mixture and the sintered products was studied. The results show that the proportion of small particle size powders with particle size ≤10 μm (mostly Fe3P powders) in the bonded mixed powders accounts for 0.65% of the total number of powder particles, which is significantly lower than that of the un-bonded mixed powders (5.93%). Hyperbranched polyester can successfully bond the Fe3P powders to the iron powder surface, which is beneficial to improve the uniformity of phosphorus in the mixed powders and prevent segregation. The Fe–Fe3P bonded mixed powders with 0.10% terminal hydroxyl hyperbranched polyester show the best powder fluidity and loose packing density. The pressing pressure of the Fe–Fe3P green billets with the same density increases with the increase of the mass fraction of hyperbranched polyester. The addition of hyperbranched polyester binder can reduce the size change rate of the sintered body before and after sintering, improve the transverse fracture strength of the sintered body, and maintain good bonding property in the actual production process.
[1] |
刘增林, 韩伟, 王彦康, 等. 陶瓷颗粒增强扩散合金化钢复合材料的微观结构和力学性能. 粉末冶金技术, 2022, 40(6): 527
Liu Z L, Han W, Wang Y K, et al. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles. Powder Metall Technol, 2022, 40(6): 527
|
[2] |
Shadangi Y, Chattopadhyay K, Mukhopadhyay N K. Powder metallurgical processing of Al matrix composite reinforced with AlSiCrMnFeNiCu high-entropy alloys: Microstructure, thermal stability, and microhardness. J Mater Res, 2023, 38(1): 248 DOI: 10.1557/s43578-022-00866-x
|
[3] |
陆宇衡. 高性能铁基粉末冶金烧结材料制备、性能及超声疲劳行为研究[学位论文]. 广州: 华南理工大学, 2014
Lu Y H. Study on the Preparation, Property and Ultrasonic Fatigue Behavior of High-performance Iron-Based Powder Metallurgy Sintered Material [Dissertation]. Guangzhou: South China University of Technology, 2014
|
[4] |
尹利广, 尹延国, 张国涛, 等. Ni、P元素对于铁基粉末冶金材料力学性能的影响. 粉末冶金技术, 2014, 32(4): 254
Yin L G, Yin Y G, Zhang G T, et al. The influence of Ni and P on the mechanical properties of iron-based power metallurgy material. Powder Metall Technol, 2014, 32(4): 254
|
[5] |
Qin Q, Yang F, Chen C G, et al. Performance improvement and microstructure evolution of powder metallurgy high silicon steel with phosphorus addition. Powder Metall, 2023, 66(1): 43 DOI: 10.1080/00325899.2022.2080156
|
[6] |
吕威, 王天国, 华建杰. 添加Cu3P对铁基粉末冶金气门导管材料组织与力学性能的影响. 粉末冶金工业, 2023, 33(6): 81
Lü W, Wang T G, Hua J J. Effect of adding Cu3P on the microstructure and mechanical properties of iron-based powder metallurgy valve guide materials. Powder Metall Ind, 2022, 33(6): 81
|
[7] |
苏柏万. 磷、硼对铁基粉末冶金材料摩擦磨损特性的影响[学位论文]. 合肥: 合肥工业大学, 2014
Su B W. Influence of Phosphorous and Boron on the Tribological Properties of PM Iron-Based Sintered Materials [Dissertation]. Hefei: Hefei University of Technology, 2014
|
[8] |
杨旸, 侯成, 江心白, 等. 铁基材料除磷性能及影响因素研究进展. 离子交换与吸附, 2024, 40(1): 61
Yang Y, Hou C, Jiang X B, et al. Progress on phosphorus removal by Fe-based materials: performance and influencing factors. Ion Exch Adsorpt, 2024, 40(1): 61
|
[9] |
谢文才. 硼、磷对镍铁基熔敷金属微观组织及蠕变性能的影响研究[学位论文]. 合肥: 中国科学技术大学, 2022
Xie W C. Study on the Effect of B and P on the Microstructure and Creep Property of Ni−Fe Based Weld Metal [Dissertation]. Hefei: University of Science and Technology of China, 2022
|
[10] |
苏凤戈, 郑卓, 汪志荣. 一种混合粉末用粘结剂的研发. 粉末冶金工业, 2019, 29(3): 73
Su F G, Zheng Z, Wang Z R. Research and development of a type of binder for premix powder. Powder Metall Ind, 2019, 29(3): 73
|
[11] |
尤力, 刘艳军, 潘宇, 等. 粉末注射成形钛合金粘结剂体系的研究进展. 粉末冶金技术, 2021, 39(6): 563
You L, Liu Y Y, Pan Y, et al. Research progress of titanium alloy binder system for powder injection molding. Powder Metall Technol, 2021, 39(6): 563
|
[12] |
李霆, 宫本奎. 混料工艺对预混合铁粉质量的影响. 金属功能材料, 2018, 25(1): 43 DOI: 10.15407/fm25.01.043
Li T, Gong B K. Effect of premixed iron powder on mixing process. Metall Funct Mater, 2018, 25(1): 43 DOI: 10.15407/fm25.01.043
|
[13] |
Engstrom U F I. Homogeneous Iron Based Powder Mixtures Free of Segregation: US Patent, 4483905A. 1984-11-20
|
[14] |
Satoshi U, Yukiko O. Iron-Based Powders for Powder Metallurgy: US Patent, 20020029657A1. 2002-03-14
|
[15] |
Satoshi U, Junichi O, Akio S. Iron-Based Mixed Powder for Powder Metallurgy and Iron-Based Sintered Compact: US Patent, 20030075016A1. 2003-04-24
|
[16] |
詹宁宁, 张丽锋, 赵新星, 等. 超支化聚合物的合成及应用. 材料导报, 2021, 35(增刊2): 616
Zhan N N, Zhang L F, Zhao X X, et al. Synthesis and application of hyperbranched polymers. Mater Rep, 2021, 35(Suppl 2): 616
|
[17] |
Chen S F, Xu Z J, Zhang D H. Synthesis and application of epoxy-ended hyperbranched polymers. Chem Eng J, 2018, 11(343): 283
|
[18] |
Chen Y S, Wang L, Yu H J, et al. Synthesis and application of polyethylene-based functionalized hyperbranched polymers. Prog Polym Sci, 2015, 45(7): 23
|
[19] |
Bhutra K, Datta S, More A P. A comprehensive review on biobased hyperbranched polymers. Polym Bulletin, 2024, 81(14): 12287 DOI: 10.1007/s00289-024-05293-y
|
[20] |
贾园, 刘茜, 杨菊香, 等. AIE型超支化聚合物的研究进展. 功能材料, 2022, 53(12): 12039 DOI: 10.3969/j.issn.1001-9731.2022.12.006
Jia Y, Liu X, Yang J X, et al. Research progress of AIE hyperbranched polymers. J Funct Mater, 2022, 53(12): 12039 DOI: 10.3969/j.issn.1001-9731.2022.12.006
|
[21] |
梁晟源, 蒙业云, 陈力, 等. 超支化聚合物在涂料领域应用的研究进展. 上海涂料, 2022, 60(5): 35
Liang S Y, Meng Y Y, Chen L, et al. Research progress in application of hyperbranched polymers in coatings. Shanghai Coat, 2022, 60(5): 35
|
[22] |
Chi W W, Yuan W, Du J, et al. Construction of functional hyperbranched poly(phenyltriazolylcarboxylate)s by metal-free phenylpropiolate-azide polycycloadditon. Macromol Rapid Commun, 2018, 39(24): 1800604 DOI: 10.1002/marc.201800604
|
[23] |
Selianitis D, Katifelis H, Gazouli M, et al. Novel multi-responsive hyperbranched polyelectrolyte polyplexes as potential gene delivery vectors. Pharmaceutics, 2023, 15(6): 1627 DOI: 10.3390/pharmaceutics15061627
|
[24] |
陈国明. 超支化聚酯改性不锈钢粉末及注射成型喂料[学位论文]. 合肥: 合肥工业大学, 2022
Chen G M. The Stainless Steel Powders Modified by Hyperbranched Polyesters and the Feedstocks for Injection Molding [Dissertation]. Hefei: Hefei University of Technology, 2022
|