AdvancedSearch
LI Jian, WANG Guangda, XIONG Ning, LI Zaosen. Current status and prospects of refractory metal targets for semiconductors[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050026
Citation: LI Jian, WANG Guangda, XIONG Ning, LI Zaosen. Current status and prospects of refractory metal targets for semiconductors[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024050026

Current status and prospects of refractory metal targets for semiconductors

More Information
  • Corresponding author:

    WANG Guangda, E-mail: wangguangda@atmcn.com

  • Received Date: May 29, 2024
  • Available Online: July 29, 2024
  • Semiconductors are the pillar industry and strategic foundation of a country. With the development of third-generation semiconductor technology, the manufacturing and material supply of the chip integrated circuits have become the key constraints on the industry development. Tungsten, tantalum, and other refractory metal targets are the key materials for the semiconductor integrated circuits, and the functional films prepared by sputtering have been applied in the various fields of electronic information industry. China has the abundant resources of refractory metals and huge industrial scale, but the high-value target materials still rely on imports. In recent years, the domestic enterprises have continuously improved and enhanced the raw material purification, preparation and processing, and performance control. The preparation of high-purity raw materials and the processing of high-performance targets have been achieved, and the significant progress in the fields of high-purity tungsten, tungsten titanium alloy targets, tungsten silicon alloy targets, and high-purity tantalum targets have been made. The research status of the refractory metal targets for semiconductors in recent years was analyzed in this paper, the technical progress of high purity refractory metal targets in China was introduced, and the suggestions for future development were put forward.

  • [1]
    先进半导体材料及辅助材料编写组. 中国先进半导体材料及辅助材料发展战略研究. 中国工程科学, 2020, 22(5): 10 DOI: 10.15302/J-SSCAE-2020.05.002

    Writing Group of Advanced Semiconductor Materials and Auxiliary Materials. Strategic study on the development of advanced semiconductor materials and auxiliary materials in China. Strat Study CAE, 2020, 22(5): 10 DOI: 10.15302/J-SSCAE-2020.05.002
    [2]
    何金江, 吕保国, 贾倩, 等. 集成电路用高纯金属溅射靶材发展研究. 中国工程科学, 2023, 25(1): 79 DOI: 10.15302/J-SSCAE-2023.01.003

    He J J, Lü B G, Jia Q et al. Development of high-purity metal sputtering targets for integrated circuits. Strat Study CAE, 2023, 25(1): 79 DOI: 10.15302/J-SSCAE-2023.01.003
    [3]
    许彦亭, 郭俊梅, 王传军, 等. 贵金属溅射靶材的研究进展. 机械工程材料, 2021, 45(8): 8 DOI: 10.11973/jxgccl202108002

    Xu Y T, Guo J M, Wang C J, et al. Research progress on precious metal sputtering target. Mater Mech Eng, 2021, 45(8): 8 DOI: 10.11973/jxgccl202108002
    [4]
    何金江, 贺昕, 熊晓东, 等. 集成电路用高纯金属材料及高性能溅射靶材制备研究进展. 新材料产业, 2015(9): 47 DOI: 10.3969/j.issn.1008-892X.2015.09.010

    He J J, He X, Xiong X D, et al. Research progress on preparation of high-purity metal materials and high-performance sputtering targets for integrated circuits. Adv Mater Ind, 2015(9): 47 DOI: 10.3969/j.issn.1008-892X.2015.09.010
    [5]
    王晖, 夏明星, 李延超, 等. 难熔金属溅射靶材的应用及制备技术. 中国钨业, 2019, 34(1): 64 DOI: 10.3969/j.issn.1009-0622.2019.01.010

    Wang H, Xia M X, Li Y C, et al. Application and preparation technology of refractory metal sputtering target. China Tungsten Ind, 2019, 34(1): 64 DOI: 10.3969/j.issn.1009-0622.2019.01.010
    [6]
    刘文迪. 集成电路用钨溅射靶材制备技术的研究进展. 中国钨业, 2020, 35(1): 36 DOI: 10.3969/j.issn.1009-0622.2020.01.007

    Liu W D. Research progress of preparation technology of tungsten sputtering targets for integrated circuits. China Tungsten Ind, 2020, 35(1): 36 DOI: 10.3969/j.issn.1009-0622.2020.01.007
    [7]
    魏修宇. 半导体用高纯钨靶材的制备技术与应用. 硬质合金, 2017, 34(5): 353

    Wei X Y. Preparation technology and application of high purity tungsten target for semiconductor. Cement Carb, 2017, 34(5): 353
    [8]
    Yu Y, Song J P, Bai F, et al. Ultra-high purity tungsten and its applications. Int J Refract Met Hard Mater, 2015(2): 5398
    [9]
    于洋, 赖亚洲, 庄志刚, 等. 半导体及太阳能溅射靶材行业用钨钛合金靶材的制备方法: 中国专利, 201110149666X, 2013-01-09

    Yu Y, Lai Y Z, Zhuang Z G, et al. Preparation Method of Tungsten Titanium Alloy Target Material for Semiconductor and Solar Sputtering Target Material Industry: China Patent, 201110149666X, 2013-01-09
    [10]
    姚力军, 相原俊夫, 大岩一彦, 等. 钨钛合金靶坯及靶材的制造方法: 中国专利, 2011103828227, 2014-03-19

    Yao L J, Aihara T, Oiwa K, et al. Manufacturing Method of Tungsten-Titanium Alloy Target Blank and Target Material: China Patent, 2011103828227, 2014-03-19
    [11]
    曲选辉, 李星宇, 章林, 等. 一种高纯度的钨钛合金靶材的制备方法: 中国专利, 2022101149126, 2023-04-25

    Qu X H, Li X Y, Zhang L, et al. Preparation Method of High-Purity Tungsten Titanium Alloy Target Material: China Patent, 2022101149126, 2023-04-25
    [12]
    金钟铃, 林涛, 邵慧萍, 等. 球磨对制备钨钛封垫的原料粉末的影响. 稀有金属, 2016, 40(7): 679

    Jin Z L, Lin T, Shao H P, et al. Raw material powder by ball-milling in preparation of W−Ti gasket. Chin J Rare Met, 2016, 40(7): 679
    [13]
    杨益航, 李剑波, 刘文迪, 等. 氢化钛高温分解制高纯WTi合金. 稀有金属材料与工程, 2021, 50(6): 2258 DOI: 10.12442/j.issn.1002-185X.20200849

    Yang Y H, Li J B, Liu W D, et al. Preparation of high purity WTi alloy by decomposition of TiH2 at high temperature. Rare Met Mater Eng, 2021, 50(6): 2258 DOI: 10.12442/j.issn.1002-185X.20200849
    [14]
    郭让民, 淡新国, 侯军涛. 加压方式对钨钛合金真空热压烧结工艺的影响. 热加工工艺, 2013, 42(10): 120

    Guo R M, Dan X G, Hou J T, et al. Effects of pressure way on vacuum hot-press sintering process of W−10Ti% alloy. Hot Working Technol, 2013, 42(10): 120
    [15]
    崔明培, 王家生, 任山, 等. 一种钨合金靶材及其制备方法: 中国专利, 2011101133083, 2013-01-23

    Cui M P, Wang J S, Ren S, et al. Tungsten Alloy Target Material and Preparation Method Thereof: China Patent, 2011101133083, 2013-01-23
    [16]
    杨益航, 王启东, 李保强, 等. WTi10合金的高温高压制备及相特征. 稀有金属材料与工程, 2021, 50(2): 664

    Yang Y H, Wang Q D, Li B Q, et al. High temperature and high pressure preparation and phase characterization of WTi10 alloy. Rare Met Mater Eng, 2021, 50(2): 664
    [17]
    姚力军, 潘杰, 相原俊夫, 等. 钨钛管靶的制造方法: 中国专利, 2015103511569, 2019-05-10

    Yao L J, Pan J, Aihara T, et al. A Tungsten-Titanium Tube Target Manufacture Method: China Patent, 2015103511569, 2019-05-10
    [18]
    蔡新志, 童培云, 朱刘, 等. 一种钨钛合金靶材及其制备方法、应用: 中国专利, 2021108035367, 2023-08-11

    Cai X Z, Tong P Y, Zhu L, et al. Tungsten-Titanium Alloy Target Material As Well As Preparation Method and Application Thereof: China Patent, 2021108035367, 2023-08-11
    [19]
    王广达, 姚惠龙, 刘国辉, 等. 一种轧制加工钨钛合金靶材的制备方法: 中国专利, 2016108445159, 2018-11-23

    Wang G D, Tao H L, Liu G H, et al. A Kind of Rolling Processing Tungsten Titanium Alloy Target Material: China Patent, 2016108445159, 2018-11-23
    [20]
    李保强, 陈金, 刘文迪, 等. 半导体用钨硅薄膜的制备技术及应用研究进展. 中国钨业, 2020, 35(3): 48 DOI: 10.3969/j.issn.1009-0622.2020.03.008

    Li B Q, Chen J, Liu W D, et al. Research progress in preparation and application of tungsten silicide films for semiconductor. China Tungsten Ind, 2020, 35(3): 48 DOI: 10.3969/j.issn.1009-0622.2020.03.008
    [21]
    黄志民, 王德志, 吴壮志, 等. 靶材用钨硅合金的制备工艺. 粉末冶金技术, 2021, 39(5): 445

    Huang Z M, Wang D Z, Wu Z Z, et al. Preparation technology of tungsten silicide alloys used for sputtering target. Powder Metall Technol, 2021, 39(5): 445
    [22]
    张龙辉, 徐国钻, 周俊安, 等. 一种高纯硅钨粉的制备方法: 中国专利, 2022102560055, 2023-12-05

    Zhang L H, Xu G Z, Zhou J A, et al. A Process for Preparing High-Purity Si−W Powder: China Patent, 2022102560055, 2023-12-05
    [23]
    姚力军, 潘杰, 边逸军, 等. 一种钨硅靶坯的制备方法: 中国专利, 2021111338488, 2023-01-23

    Yao L J, Pan J, Bian Y J, et al. Preparation Method of Tungsten-Silicon Target Blank: China Patent, 2021111338488, 2023-01-23
    [24]
    (李利利, 丁照崇, 曲鹏, 等. 一种高纯低氧钨硅合金靶材的制备方法: 中国专利, 2021102956062, 2023-04-18

    Li L L, Ding Z C, Qu P, et al. The Preparation Method of High-Purity Low Oxygen Tungsten-Silicon Alloy Target Material: China Patent, 2021102956062, 2023-04-18
    [25]
    程少磊, 马国成, 欧海玲, 等. 一种钨硅合金靶材的制备方法: 中国专利, 2021115194758, 2023-09-05

    Cheng S L, Ma G C, Ou H L, et al. The Invention Relates to a Preparation Method of a Tungsten-Silicon Alloy Target Material: China Patent, 2021115194758, 2023-09-05
    [26]
    李仲香, 杨国启, 陈学清, 等. 溅射钽靶材用高纯钽粉工艺研究. 材料开发与应用, 2017, 32(3): 67

    Li Z X, Yang G Q, Chen X Q, et al. Study on production process of high pure tantalum powder for tantalum target. Dev Appl Mater, 2017, 32(3): 67
    [27]
    张铭显, 朱芳, 张国祥, 等. 基于专利分析的钽粉制备技术现状研究与趋势分析. 粉末冶金工业, 2023, 33(6): 140

    Zhang M X, Zhu F, Zhang G X, et al. Analysis on current status and trend of tantalum powder preparation technology based on patents. Powder Metall Ind, 2023, 33(6): 140
    [28]
    董璞, 薛晶晶, 周龙海, 等. 大规格纯钽板材的试制. 热加工工艺, 2016, 45(18): 93

    Dong P, Xue J J, Zhou L H, et al. Trial-manufacture of large scale pure tantalum plate. Hot Working Technol, 2016, 45(18): 93
    [29]
    李兆博, 杜领会, 汪凯, 等. 大规格钽板材轧制工艺研究. 材料开发与应用, 2020, 35(5): 59

    Li Z B, Du L H, Wang K, et al. The research of large size tantalum sheets’ rolling technology. Dev Appl Mater, 2020, 35(5): 59
    [30]
    刘施峰, 龙豆豆, 祝佳林, 等. 一种提高厚靶材用钽板微观组织均匀性的加工方法: 中国专利, 2021100487440, 2021-06-01

    Liu S F, Long D D, Zhu J L, et al. Processing Method for Improving the Uniformity of Microstructure of Thick Tantalum Target: China Patent, 2021100487440, 2021-06-01
    [31]
    刘施峰, 林男, 柳亚辉, 等. 一种获得均匀组织和织构的溅射靶材用钽板轧制方法: 中国专利, 2018102053497, 2020-09-08

    Liu S F, Lin N, Liu Y H, et al. Tantalum Plate Rolling Method for Sputtering Target Material for Obtaining Uniform Tissue and Texture: China Patent, 2018102053497, 2020-09-08
    [32]
    潘文高, 陈炜晔, 吴澜尔. 钽材轧制和再结晶织构演变研究进展. 材料导报, 2016, 30(21): 150

    Pan W G, Chen W Y, Wu L E. Progress in rolling and recrystallization on textures of tantalum. Mater Rev, 2016, 30(21): 150
    [33]
    谢盼平, 袁思成, 胡立坤, 等. 高纯钽板的轧制与退火织构. 矿冶工程, 2019, 39(6): 129 DOI: 10.3969/j.issn.0253-6099.2019.06.032

    Xie P P, Yuan S C, Hu L K, et al. Rolling and annealing texture of high-purity tantalum plate. Min Metall Eng, 2019, 39(6): 129 DOI: 10.3969/j.issn.0253-6099.2019.06.032
    [34]
    陈明, 朱晓光, 王欣平, 等. Ta晶粒细化工艺及组织、织构的研究. 热加工工艺, 2010, 39(8): 26 DOI: 10.3969/j.issn.1001-3814.2010.08.009

    Chen M, Zhu X G, Wang X P, et al. Study on tantalum grain refinement process and microstructure, texture. Hot Working Technol, 2010, 39(8): 26 DOI: 10.3969/j.issn.1001-3814.2010.08.009
    [35]
    毛宇成, 刘施峰, 范海洋, 等. 高纯钽交叉轧制过程中微观结构和织构梯度的演变. 电子显微学报, 2017, 36(1): 7

    Mao Y C, Liu S F, Fan H Y, et al. Evolution of texture gradient and microstructure of high purity tantalum in clock-rolling process. J Chin Electron Microsc Soc, 2017, 36(1): 7
    [36]
    柳亚辉, 刘施峰, 范海洋, 等. 高纯钽板中晶粒生长的取向相关性研究. 电子显微学报, 2016, 35(1): 17

    Liu Y H, Liu S F, Fan H Y, et al. Study on the orientation-dependent grain growth of high purity tantalum. J Chin Electron Microsc Soc, 2016, 35(1): 17
    [37]
    祝佳林, 刘施峰, 柳亚辉, 等. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应. 材料导报, 2018, 32(20): 3595 DOI: 10.11896/j.issn.1005-023X.2018.20.018

    Zhu J L, Liu S F, Liu Y H, et al. Gradient of microstructure and texture evolution of cold rolled high purity tantalum plate during annealing process. Mater Rev, 2018, 32(20): 3595 DOI: 10.11896/j.issn.1005-023X.2018.20.018
    [38]
    祝佳林, 邓超, 柳亚辉, 等. 预退火对纯钽再结晶行为的影响. 电子显微学报, 2018, 37(6): 607

    Zhu J L, Deng C, Liu Y H, et al. The effect of pre-annealing on recrystallization behavior of purity tantalum. J Chin Electron Microsc Soc, 2018, 37(6): 607
    [39]
    祝佳林, 毛宇成, 刘施峰, 等. 高纯钽退火过程中储存能演变及其对再结晶行为的影响. 中国有色金属学报, 2019, 29(1): 5

    Zhu J L, Mao Y C, Liu S F, Stored energy evolution of high-purity tantalum during annealing and its effect on recrystallization behavior. Chin J Nonferrous Met, 2019, 29(1): 54
    [40]
    祝佳林, 邓超, 柳亚辉, 等. 钽板退火过程中的储存能演变与再结晶行为. 材料导报, 2019, 33(4): 654 DOI: 10.11896/cldb.201904017

    Zhu J L, Deng C, Liu Y H, et al. The stored energy evolution and recrystallization behavior of tantalum plate during annealing. Mater Rev, 2019, 33(4): 654 DOI: 10.11896/cldb.201904017

Catalog

    Article Metrics

    Article views (106) PDF downloads (24) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return