AdvancedSearch
Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024100012
Citation: Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024100012

Study on microstructure and high-temperature corrosion resistance to melt-salts of LDED High-Cr Ni-base alloy with low melting point

More Information
  • Available Online: December 19, 2024
  • In view of the serious corrosion and wear failure of parts under harsh and high-temperature service conditions, low-melting nickel base alloy samples with different Cr content were prepared by laser directed energy deposition (LDED). The effects of Cr content on the microstructure and high-temperature corrosion resistance of the alloy were investigated. The microstructure of the alloy was analyzed by SEM, XRD and EPMA, and the relationship between the microstructure, hardness and resistance to high temperature molten salt corrosion was discussed. The results show that the microstructure of high Cr and low melting point nickel base alloy prepared by LDED is mainly composed of γ-Ni, CrB and Cr5B3. With the increase of Cr content, the boride content in the alloy increases correspondingly, and the coarse Cr5B3 phase changes from block to coarse strip gradually, The Daisy (γ-Ni+CrB) eutectic phase disappeared, and lamellar (γ-Ni+Cr5B3) eutectic phase appeared. The hardness of the alloy increases with the Cr content, reaching up to 360.8 HV, mainly due to the increase of matrix phase hardness and boride hard phase content. Compared with TP347H stainless steel, the new high Cr and low melting point nickel base alloy has better resistance to high temperature molten salt corrosion, with the increase of Cr content, the high temperature corrosion resistance of the alloy is obviously improved. Cr40 alloy samples show the best corrosion resistance, which is about 15 times higher than TP347H. During the high temperature corrosion process, a dense Cr-rich oxide film is formed on the alloy surface, which can effectively prevent the corrosion reaction from invading. On the other hand, Cr element can play the role of sulfur fixation, so that the high Cr low melting point nickel-based alloy shows excellent resistance to high temperature molten salt corrosion.
  • Related Articles

    [1]YUAN Zhenyu, CHANG Cheng, QI Huiying, XIAO Haibo, YAN Xingchen. Effects of micro-TiC particles on microstructure and mechanical properties of selective laser melting Inconel 625 alloys[J]. Powder Metallurgy Technology, 2025, 43(1): 94-101. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070005
    [2]OUYANG Wei, ZHAI Bo, CHEN Wenlin, SONG Kuijing, CHEN Chang, ZHONG Zhihong. Microstructure and mechanical properties of FeCrCoMnNi matrix composites reinforced by TiC particles[J]. Powder Metallurgy Technology, 2024, 42(4): 338-345. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100010
    [3]HAN Guoqiang, WANG Weiwei, LI Xiaoyan. Effect of powder sintering on microstructure and mechanical properties of magnesium‒scandium alloys[J]. Powder Metallurgy Technology, 2023, 41(6): 548-553. DOI: 10.19591/j.cnki.cn11-1974/tf.2020070005
    [4]YANG Jie, LIU Le, HUANG Xiaolin. Microstructure and mechanical properties of powder metallurgy sinter hardening steels with low Cr content[J]. Powder Metallurgy Technology, 2023, 41(4): 345-349, 355. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060008
    [5]PENG Erbao, MA Xiao. Microstructure and mechanical properties of nanoscale xSiC/Mg‒5.5Zn‒0.1Y alloys by solid phase synthesis[J]. Powder Metallurgy Technology, 2023, 41(2): 149-153. DOI: 10.19591/j.cnki.cn11-1974/tf.2020110009
    [6]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [7]GU Jing-hong, XIAO Ping-an, XIAO Li-yang, LÜ Rong, GU Si-min, ZHAO Ji-kang. Microstructure and mechanical properties of TiC particle enhanced high chromium iron[J]. Powder Metallurgy Technology, 2021, 39(4): 319-325. DOI: 10.19591/j.cnki.cn11-1974/tf.2020080001
    [8]LU Bo, ZHU Jian-feng, FANG Yuan, ZHAO Xu, WANG Jia-huan, HE Peng. Effect of SiC on the microstructure and mechanical properties of aluminum matrix composites by in-situ synthesis[J]. Powder Metallurgy Technology, 2020, 38(1): 42-50. DOI: 10.19591/j.cnki.cn11-1974/tf.2020.01.007
    [9]HE Qin-qiu, LI Pu-ming, YUAN Yong, ZHANG De-jin, LIU Zeng-lin, LI Song-lin. Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.01.002
    [10]LIU Ren-zhi, AN Geng, YANG Qin-li, ZHUANG Fei, WANG Yin-ting, CUI Yu-qing, WANG Na, CAO Wei-cheng. Microstructures and mechanical properties of Mo-Re-La alloy[J]. Powder Metallurgy Technology, 2018, 36(6): 429-432,444. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.06.005
  • Cited by

    Periodical cited type(1)

    1. 鞠庆红,成博源,王浩. 镍基粉末高温合金的热力学相图计算. 铸造工程. 2024(03): 33-37 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (32) PDF downloads (12) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return