Citation: | LIU Guang-xu, WANG Xiao-feng, YANG Jie, ZOU Jin-wen. Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface[J]. Powder Metallurgy Technology, 2022, 40(3): 218-225. DOI: 10.19591/j.cnki.cn11–1974/tf.2021040006 |
[1] |
邹金文, 汪武祥. 粉末高温合金研究进展与应用. 航空材料学报, 2006, 26(3): 244 DOI: 10.3969/j.issn.1005-5053.2006.03.051
Zou J W, Wang W X. Development and application of P/M superalloy. J Aeron Mater, 2006, 26(3): 244 DOI: 10.3969/j.issn.1005-5053.2006.03.051
|
[2] |
傅豪, 王梦雅, 纪箴, 等. 热变形对FGH96高温合金原始颗粒边界的影响. 粉末冶金技术, 2018, 36(3): 201
Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy. Powder Metall Technol, 2018, 36(3): 201
|
[3] |
许文勇, 李周, 刘玉峰, 等. 温度对镍基高温合金粉末氧化行为的影响. 粉末冶金技术, 2020, 38(3): 192
Xu W Y, Li Z, Liu Y F, et al. Influence of temperature on the oxidation behaviors of the nickel-based superalloy powders. Powder Metall Technol, 2020, 38(3): 192
|
[4] |
钟治勇, 张义文, 刘建涛, 等. 时效处理对一种新型粉末高温合金组织和性能的影响. 粉末冶金工业, 2020, 30(3): 14
Zhong Z Y, Zhang Y W, Liu J T, et al. Effects of aging heat treatment on the microstructure and properties of a new type nickel-based PM superalloy. Powder Metall Ind, 2020, 30(3): 14
|
[5] |
Preuss M, Pang J W L, Withers P J, et al. Inertia welding nickel-based superalloy: Part I. metallurgical characterization. Metall Mater Trans A, 2002, 33: 3215 DOI: 10.1007/s11661-002-0307-y
|
[6] |
Senkov O N, Mahaffey D W, Semiatin S L. A comparison of the inertia friction welding behavior of similar and dissimilar Ni-based superalloys. Metall Mater Trans A, 2018, 49: 5428 DOI: 10.1007/s11661-018-4853-3
|
[7] |
Li H Y, Huang Z W, Bray S, et al. High temperature fatigue of friction welded joints in dissimilar nickel based superalloys. Mater Sci Technol, 2007, 23: 1408 DOI: 10.1179/174328407X243933
|
[8] |
Gale W F, Butts D A. Transient liquid phase bonding. Sci Technol Weld Joining, 2004, 9: 283 DOI: 10.1179/136217104225021724
|
[9] |
Yuan L, Xiong J T, Peng Y, et al. Microstructure and mechanical properties in the solid-state diffusion bonding joints of Ni3Al based superalloy. Mater Sci Eng A, 2020, 772: 138670 DOI: 10.1016/j.msea.2019.138670
|
[10] |
Zhang G, Chandel R S, Seow H P. Solid state diffusion bonding of Inconel 718. Sci Technol Weld Joining, 2001, 6: 235 DOI: 10.1179/136217101101538820
|
[11] |
Xiong J T, Yuan L, Zhu Y, et al. Diffusion bonding of nickel-based superalloy GH4099 with pure nickel interlayer. J Mater Sci, 2019, 54: 6552 DOI: 10.1007/s10853-018-03274-x
|
[12] |
Chamanfar A, Jahazi M, Cormier J. A review on inertia and linear friction welding of Ni-based superalloys. Metall Mater Trans A, 2015, 46: 1639 DOI: 10.1007/s11661-015-2752-4
|
[13] |
Zhu F H, Chen C J, Li X F, et al. Role of thermal cycle in joining Ti–6Al–4V and Ti2AlNb-based alloys through diffusion bonding and post heat treatment. Mater Charact, 2019, 156: 109830 DOI: 10.1016/j.matchar.2019.109830
|
[14] |
Duarte L I, Ramos A S, Vieir M F, et al. Solid-state diffusion bonding of gamma-TiAl alloys using Ti/Al thin films as interlayers. Intermetallics, 2006, 14: 1151 DOI: 10.1016/j.intermet.2005.12.011
|
[15] |
Fu X S, Wang X C, Wang Q, et al. Effect of surface self-nanocrystallization on diffusion bonding between a titanium alloy and a TiAl-based alloy. J Mater Eng Perform, 2018, 27: 5551 DOI: 10.1007/s11665-018-3638-6
|
[16] |
Zhang C, Li M Q, Li H. Diffusion behavior at void tip and its contributions to void shrinkage during solid state bonding. J Mater Sci Technol, 2018, 34: 1449 DOI: 10.1016/j.jmst.2017.12.001
|
[17] |
Elrefaey A, Tillmann W. Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer. J Mater Proc Technol, 2009, 209: 2746 DOI: 10.1016/j.jmatprotec.2008.06.014
|
[18] |
崔忠圻, 覃耀春. 金属学与热处理. 2版. 北京: 机械工业出版社, 2011
Cui Z Q, Qin Y C. Metallurgy and Heat Treatment. 2nd Ed. Beijing: China Machine Press, 2011
|