AdvancedSearch
Wang Chonglin. DISCUSSION ON RADIAL CRUSHING STRENGTH TESTING[J]. Powder Metallurgy Technology, 1996, 14(3): 206-211.
Citation: Wang Chonglin. DISCUSSION ON RADIAL CRUSHING STRENGTH TESTING[J]. Powder Metallurgy Technology, 1996, 14(3): 206-211.

DISCUSSION ON RADIAL CRUSHING STRENGTH TESTING

More Information
  • Received Date: August 26, 1995
  • Available Online: August 03, 2021
  • According to an analysis of planar camber beam under stress,the positive stress on the inner and outer surface of ring during its crushing strength testing has been deducted. The tension stress on the inner surface Caused damage to specimen with a process similar to that during bending testing and σ+/K value is rebated to the seometric size of the ring R2/R1. In case of R2/R1=0.87,the σ+/Kvalue equals to 1.0,i. e. the crushing value K obtained through testing equals to bending strength σbb. A modificed formula for bending strenth tested by ring crushing method has also been outlined.
  • Related Articles

    [1]LIU Guang-xu, WANG Xiao-feng, YANG Jie, ZOU Jin-wen. Effect of heat treatment on microstructure evolution and mechanical properties of P/M Ni-based superalloy at diffusion bonding interface[J]. Powder Metallurgy Technology, 2022, 40(3): 218-225. DOI: 10.19591/j.cnki.cn11–1974/tf.2021040006
    [2]XIAO Ping-an, ZHAO Ji-kang, GU Jing-hong, LÜ Rong, GU Si-min, CHEN Yu-xiang, CHEN Huan. Fabrication technology upgrade of TiC-based high manganese steel bonded cemented carbide[J]. Powder Metallurgy Technology, 2021, 39(6): 545-548. DOI: 10.19591/j.cnki.cn11-1974/tf.2020090010
    [3]YANG Jie, LIU Guang-xu, ZHANG Jing, WANG Wen-ying, WANG Xiao-feng, ZOU Jin-wen. Microstructure and failure mechanism of FGH96 solid-state diffusion bonding interface[J]. Powder Metallurgy Technology, 2021, 39(4): 311-318. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040005
    [4]Su Yixiang, Lei Yu, Xu Zhuang, Zhao Xiaoli, Guo Haifeng. Study on microstructure and properties of containing tellurium nickel-based alloy powder coating by non-vacuum fusion[J]. Powder Metallurgy Technology, 2013, 31(5): 323-327. DOI: 10.3969/j.issn.1001-3784.2013.05.001
    [5]Fan Anping, Xiao Ping'an, Li Chenkun, Xuan Cuihua, Qu Xuanhui. Research situation of TiC-based steel bonded carbide[J]. Powder Metallurgy Technology, 2013, 31(4): 298-303. DOI: 10.3969/j.issn.1001-3784.2013.04.011
    [6]Gong Wei, Li Hua, Zhu Yong. Effect of vanadium content on the microstructure and mechanical properties of (Ti,V)C35CrMo steel bonded carbide[J]. Powder Metallurgy Technology, 2009, 27(5): 336-340.
    [7]Liu Junbo, Wang Limei, Liu Junhai, Huang Jihua. Influence of bonding phase on microstructure of steel bonded Himet synthesized in situ[J]. Powder Metallurgy Technology, 2007, 25(4): 266-270.
    [8]Xiong Yongjun, Li Xibin, Liu Rutie, Zhao Fuan. Influences of high energy ball milling on microstructure and properties of a new steel bonded titanium carbide[J]. Powder Metallurgy Technology, 2006, 24(3): 187-191. DOI: 10.3321/j.issn:1001-3784.2006.03.006
    [9]Liu Junhai, Huang Jihua, Song Guixiang, Zhang Jiangang. A study on in situ reactive synthesis of TiC/heat resistant steel-steel bonded carbides[J]. Powder Metallurgy Technology, 2005, 23(3): 199-203. DOI: 10.3321/j.issn:1001-3784.2005.03.009
    [10]Wu Qiang, Hu Zhenhua, Xiao Jianzhong, Cui Kun. TEM RESEARCH ON MICROSTRUCTURES OF TiC-50Nb STEEL-BONDED CEMENTED CARBIDE[J]. Powder Metallurgy Technology, 1993, 11(3): 202-207.

Catalog

    Article Metrics

    Article views (477) PDF downloads (29) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return