AdvancedSearch
Liu Duojun. APPLICATION OF WATER-ATOMIZED IRON POWDER FOR PARTS OF TEXTILEMACHINERY[J]. Powder Metallurgy Technology, 1994, 12(4): 286-289.
Citation: Liu Duojun. APPLICATION OF WATER-ATOMIZED IRON POWDER FOR PARTS OF TEXTILEMACHINERY[J]. Powder Metallurgy Technology, 1994, 12(4): 286-289.

APPLICATION OF WATER-ATOMIZED IRON POWDER FOR PARTS OF TEXTILEMACHINERY

More Information
  • Received Date: November 26, 1993
  • Available Online: July 29, 2021
  • The process of seeking for superior quality iron powder since the 1970s has heen reviewed from the view point of production developerment. The peper has briefly summerized the main reason and experience in application of water-atomized iron powder in the plant for many years and the statue of successful application in the production of σ=6. 8g/cm3 textile machinery P/M parts. The practics shows that the application of water-atomized iron powder is an effective way of optimizing technologies and continuously approving the properties of perts.
  • Related Articles

    [1]MU Jianghan, LIU Shumei, LI Dajie, YANG Hangzhou, ZHOU Haitao. Deformation of Fe2Ni prepared by metal powder injection molding[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023070001;https://pmt.ustb.edu.cn
    [2]HOU Cheng-long, GUO Jun-qing, CHEN Fu-xiao, HUANG Tao. Metal powder injection molding technology and numerical simulation[J]. Powder Metallurgy Technology, 2022, 40(1): 72-79. DOI: 10.19591/j.cnki.cn11-1974/tf.2020120007
    [3]SUN Si-heng, SUN Yan, JIA Cun-feng, WANG Hui-jie, FANG Yun-feng, PANG Lei. Study on the explosion sensitivity of metal powders used in additive manufacturing[J]. Powder Metallurgy Technology, 2020, 38(4): 249-256. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010009
    [4]ZHUANG Tian-ya, ZHANG Ji-liang, WANG Fei, ZHANG Sai-sai, HUANG Yi-bin. Research progress on the microwave sintering mechanism of metal powders[J]. Powder Metallurgy Technology, 2019, 37(5): 392-398. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.05.011
    [5]LIN Li, LIU Jun, ZHOU Chun, HU Hai-feng. Optimization analysis of die mass and particle model in metal powder impact compaction[J]. Powder Metallurgy Technology, 2018, 36(3): 182-189. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.004
    [6]Xiang Qingchun, Zhou Bide, Li Rongde. DEVELOPMENTS OF RAPID SOLIDIFICATION TECHNIQUES FOR METAL POWDER PRODUCTION[J]. Powder Metallurgy Technology, 2000, 18(4): 283-291.
    [7]Li Mingyi, Guo Shiju, Kang Zhijun, Lin Tao. WARM COMPACTION BEHAVIOR OF VARIOUS METAL POWDERS[J]. Powder Metallurgy Technology, 2000, 18(4): 261-264.
    [8]Qu Xuanhui, Yan Hansong, Huang Baiyun. Development of Binders for Metal Powder Injection Molding[J]. Powder Metallurgy Technology, 1997, 15(1): 61-65.
    [9]Li Qingquan, Ouyang Tong, Ma Runhai, Tong Lirong, Han Yanliang, Lin Gang. Research of Producing procedure of Fine Metal Powder by gas Atomization[J]. Powder Metallurgy Technology, 1996, 14(3): 181-188.
    [10]Dong Jianzhong. STUDY OF BAKING METAL POWDER METHODS[J]. Powder Metallurgy Technology, 1990, 8(4): 213-215.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return