Loading [MathJax]/jax/output/SVG/jax.js
AdvancedSearch
Ge Rongde. SEVERAL PROBLEMS ON APPLICATION OF KAWAKITA′S POWDER COMPACTION EQUATION AND ITS MODIFICATION[J]. Powder Metallurgy Technology, 1993, 11(2): 90-94.
Citation: Ge Rongde. SEVERAL PROBLEMS ON APPLICATION OF KAWAKITA′S POWDER COMPACTION EQUATION AND ITS MODIFICATION[J]. Powder Metallurgy Technology, 1993, 11(2): 90-94.

SEVERAL PROBLEMS ON APPLICATION OF KAWAKITA′S POWDER COMPACTION EQUATION AND ITS MODIFICATION

More Information
  • Received Date: October 23, 1992
  • Available Online: August 06, 2021
  • On the bases of experimental data of the compaction of various powders, comparisons and analyses of two methods for varifying the powder compaction equation proposed by Kawakita and its accuracy have been made by using statistically analyzing measures and the physical significance of equation parameters and the application range of equation have been discussed. Furthermore, a modified equation is proposed, which is expressed as:log(DD01D)=AlogP+B. The results of statistical analyses show that the modified equation gives not only higher accuracy, but also wider applicability.
  • Related Articles

    [1]ZHANG Mei, CHEN Zhipeng, LI Jiaxin, CHEN Wenchao, CHEN Pengqi. Effects of raw iron powder type on the microstructure and properties of Fe–29Ni–17Co Kovar alloys[J]. Powder Metallurgy Technology, 2024, 42(3): 234-241. DOI: 10.19591/j.cnki.cn11-1974/tf.2022030002
    [2]ZHANG Shan-shan, LI Chang-yun, PAN Yue-wu, XU Lei, HU Hao. Application and preparation of copper-coated iron powders[J]. Powder Metallurgy Technology, 2020, 38(6): 465-474. DOI: 10.19591/j.cnki.cn11-1974/tf.2019070007
    [3]Tang Siqi, Lei Fuwei, Huang Yongguang, Ding Jinhua, Liu Wenxing. Study on rotary kiln reducing process of carbonyl iron powder[J]. Powder Metallurgy Technology, 2014, 32(3): 200-203.
    [4]Reduced Iron Powder from Mill Scale[J]. Powder Metallurgy Technology, 2001, 19(1): 33-44. DOI: 10.3321/j.issn:1001-3784.2001.01.008
    [5]Li Mingyi, Guo Shiju, Lin Tao, Kang Zhijun. THE INFLUENCE OF CHARACTERISTICS OF IRON POWDERS ON WARM-COMPACTED DENSITY[J]. Powder Metallurgy Technology, 2000, 18(3): 172-177.
    [6]Sun Weimin, Jin Shouri. Continuous Production of Ultrafine Iron Powder[J]. Powder Metallurgy Technology, 1997, 15(3): 199-202.
    [7]Wang Binggen. SEVERAL FACTORS INFLUENCING ELECTROMAGNETIC CHARACTERISTZCS OF CARBONYL IRON POWDER[J]. Powder Metallurgy Technology, 1996, 14(2): 145-149.
    [8]Liu Duojun. APPLICATION OF WATER-ATOMIZED IRON POWDER FOR PARTS OF TEXTILEMACHINERY[J]. Powder Metallurgy Technology, 1994, 12(4): 286-289.
    [9]Jian Fuquan, He Gaofeng, Yu Hai. RESEARCH ON SINTERING DENSITY OF IRON BASE ALLOY IMPROVED BY ADDITION OF CARBONYL IRON POWDER[J]. Powder Metallurgy Technology, 1994, 12(4): 278-281.
    [10]Yu Xieting. FUNDAMENTAL AND TECHNOLOGICAL CONTROL FOR SECONDARY REDUCTION OF IRON POWDER[J]. Powder Metallurgy Technology, 1994, 12(2): 96-102.

Catalog

    Article Metrics

    Article views (275) PDF downloads (23) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return