AdvancedSearch
Xie Wenguo, Xie Xuezhi. MORPHOLOGICAL STRUCTURE AND PARTICLE SIZE OF STRENTHENING PARTICLES IN DISPERSIONSTRENTHENING COPPER ALLOY[J]. Powder Metallurgy Technology, 1996, 14(2): 136-138.
Citation: Xie Wenguo, Xie Xuezhi. MORPHOLOGICAL STRUCTURE AND PARTICLE SIZE OF STRENTHENING PARTICLES IN DISPERSIONSTRENTHENING COPPER ALLOY[J]. Powder Metallurgy Technology, 1996, 14(2): 136-138.

MORPHOLOGICAL STRUCTURE AND PARTICLE SIZE OF STRENTHENING PARTICLES IN DISPERSIONSTRENTHENING COPPER ALLOY

More Information
  • Received Date: July 22, 1995
  • Available Online: August 03, 2021
  • A method of making of Al2O3 particles in dispersion-strenthening copper alloy has been studied by means of TEM and the size,morphology and structure changes of Al2O3 particles under the conditions of different technologies have been observed.
  • Related Articles

    [1]ZHANG Wei, ZHANG Yongping, HE Xiaocai, DIAO Weizhi, YAN Sen. Effect of ball milling time on the particle size and morphology of fine copper powders[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2023090011
    [2]LIU Zeng-lin, HAN Wei, WANG Yan-kang, WANG Tao, LÜ Wei-long. Microstructure and mechanical properties of diffusion alloyed steel composites reinforced by ceramic particles[J]. Powder Metallurgy Technology, 2022, 40(6): 527-534. DOI: 10.19591/j.cnki.cn11-1974/tf.2021120007
    [3]ZHANG Su-qing, SU Qian, YU Huan, XIA Jin-huan, MA Bai-chang, ZHUANG Hai-hua, ZHOU Ji-xue. Effect of ultrafine SiC particles on microstructure and property of milled nanocrystalline AZ91 magnesium alloys[J]. Powder Metallurgy Technology, 2021, 39(6): 512-519. DOI: 10.19591/j.cnki.cn11-1974/tf.2019120003
    [4]YANG Wen-tao, XUE Bing, DAI Yong-fu, PU Chuan-jin, XIAO Ding-jun. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428. DOI: 10.19591/j.cnki.cn11-1974/tf.2020020010
    [5]ZHANG Xiao-hong, SHEN Jing-yuan, SUN Yu, HU Lian-xi. Study on the microstructure and properties of dispersion-reinforced Cu-based composites by ultrafine WC and nano-sized Al2O3 particles via extrusion densification[J]. Powder Metallurgy Technology, 2019, 37(6): 422-427. DOI: 10.19591/j.cnki.cn11-1974/tf.2019.06.004
    [6]FU Hao, WANG Meng-ya, JI Zhen, TIAN Gao-feng, QIN Tian, JIA Cheng-chang. Effect of thermal deformation on prior particle boundary of FGH96 superalloy[J]. Powder Metallurgy Technology, 2018, 36(3): 201-205. DOI: 10.19591/j.cnki.cn11-1974/tf.2018.03.007
    [7]Lu Liguo. INFLUENCE OF AVERAGE PARTICLE SIZE OF TUNGSTEN-ALUMINIUM POWDER ON DENSITY OF SINTERED BAR[J]. Powder Metallurgy Technology, 1995, 13(1): 31-33.
    [8]Liang Guoxian, Wang Erde, Wang Yongqian, Li Zhimin. EFFECTS OF BALL MILLING CONDITIONS ON PARTICLE SIZES OF MECANICALLY ALLOYED POWDER[J]. Powder Metallurgy Technology, 1993, 11(1): 28-32.
    [9]Yu Xieting, Teng Ronghou, Hu Rongze. CHARACTERISTICS AND APPLICATIONS OF ULTRAFINE METALLIC PARTICLES[J]. Powder Metallurgy Technology, 1992, 10(2): 136-141.
    [10]Guo Guozhou. METHOD FOR DETERMINATING AVERAGE PARTICLE SIZE——PROJECTION AREA METHOD[J]. Powder Metallurgy Technology, 1992, 10(1): 59-62.

Catalog

    Article Metrics

    Article views (212) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return