AdvancedSearch
Zhang Bo, Quan Yongxin, Ma Ji. THE PROPERTIES OF METALLIC SELF-LUBRICATING BEARINGS[J]. Powder Metallurgy Technology, 1985, 3(2): 39-44.
Citation: Zhang Bo, Quan Yongxin, Ma Ji. THE PROPERTIES OF METALLIC SELF-LUBRICATING BEARINGS[J]. Powder Metallurgy Technology, 1985, 3(2): 39-44.

THE PROPERTIES OF METALLIC SELF-LUBRICATING BEARINGS

More Information
  • Available Online: August 24, 2021
  • Since Self-lubricating bearings usually work under the conditinss of boundary lubrication, their performance is very sensitive to following factors, matrix materials, pore sizes and porosity. In this paper, therecent experimental results obtained by improving the performance of self-lubricating bearings as a result of the selection of composition and the control of processing conditions were given. The requirements for porous bearings used under the conditions of low noise and/or high speeds were described and several new materials which were suitable for these applications were also listed. Some aspects to be further studied were finally suggested.
  • Related Articles

    [1]TANG Cuiyong, XIE Wenbin, ZOU Zechang, SUN Zhenjun, CHEN Xueyong, SHEN Rongfeng. Effect of TiC on amorphous forming ability, microstructure, and thermal stability of Fe55Nb15Ti15Ta15 alloys[J]. Powder Metallurgy Technology, 2024, 42(1): 84-90. DOI: 10.19591/j.cnki.cn11-1974/tf.2022100012
    [2]XIA Zheyuan, LI Jiacheng, ZOU Zechang, CHEN Zhihui, CHEN Xueyong, TANG Cuiyong. Fabrication of Ti60Mn20‒xCu20+x (x=0, 10) amorphous powders by mechanical alloying[J]. Powder Metallurgy Technology. DOI: 10.19591/j.cnki.cn11-1974/tf.2024070009
    [3]WANG Silun, CUI Zizhen, LIU Quanyi, XIE Fei, LIN Yansong. Cu–Cr–Mo alloys prepared by mechanical alloying and hot isostatic pressing[J]. Powder Metallurgy Technology, 2023, 41(5): 475-480. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090001
    [4]Xu Ke, Chen Hui, Ma Qin, Zhao Xue. The preparation of Al2O3/Mo5Si3 composite powder by mechanical alloying[J]. Powder Metallurgy Technology, 2011, 29(3): 173-176,182.
    [5]Meng Jie, Jia Chengchang, Wang Kaiming. Review of formation of Ni3Al intermetallics compounds by mechanical alloying[J]. Powder Metallurgy Technology, 2006, 24(4): 299-303,309. DOI: 10.3321/j.issn:1001-3784.2006.04.015
    [6]Zhang Dongfang. DEVELOPMENT OF HEAVY ALLOY ELECTRODE FOR RESISTANCE PRESSING WELDING[J]. Powder Metallurgy Technology, 1996, 14(3): 198-200.
    [7]Zhang Tongjun, Yang Junyou, Zhou Zhuohua, Zhang Jie, Cui Kun. MECHANICAL ALLOYING PROCESS DURING HIGH ENERGY BALL MILLING[J]. Powder Metallurgy Technology, 1996, 14(1): 2-7.
    [8]Wang Erde, Wang Yongqian, Liang Guoxian, Song Guangsheng, Liu Xuhua. STRUCTURAL FEATURES OF MECHANICALLY ALLOYED Al-10Fe-4Ni POWDER[J]. Powder Metallurgy Technology, 1993, 11(3): 167-170.
    [9]Liang Guoxian, Wang Erde, Wang Yongqian, Li Zhimin. EFFECTS OF BALL MILLING CONDITIONS ON PARTICLE SIZES OF MECANICALLY ALLOYED POWDER[J]. Powder Metallurgy Technology, 1993, 11(1): 28-32.
    [10]Huang Zepei, Qiu Guanghan, Huang Yuanzhen. PREPARATION OF AMORPHOUS Cu-Ti ALLOYS MECHANICAL ALLOYING[J]. Powder Metallurgy Technology, 1992, 10(2): 99-102.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return