机械球磨技术在材料制备中的应用

张桂银 查五生 陈秀丽 严峻

张桂银, 查五生, 陈秀丽, 严峻. 机械球磨技术在材料制备中的应用[J]. 粉末冶金技术, 2018, 36(4): 315-318. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.013
引用本文: 张桂银, 查五生, 陈秀丽, 严峻. 机械球磨技术在材料制备中的应用[J]. 粉末冶金技术, 2018, 36(4): 315-318. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.013
ZHANG Gui-yin, ZHA Wu-sheng, CHEN Xiu-li, YAN Jun. Application of mechanical ball-milling technology in material preparation[J]. Powder Metallurgy Technology, 2018, 36(4): 315-318. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.013
Citation: ZHANG Gui-yin, ZHA Wu-sheng, CHEN Xiu-li, YAN Jun. Application of mechanical ball-milling technology in material preparation[J]. Powder Metallurgy Technology, 2018, 36(4): 315-318. doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.013

机械球磨技术在材料制备中的应用

doi: 10.19591/j.cnki.cn11-1974/tf.2018.04.013
基金项目: 

四川省科技计划资助项目 2014GZ0088

四川省教育厅自然重大培育项目资助项目 16201452

详细信息
    通讯作者:

    查五生, E-mail: 1434758301@qq.com

  • 中图分类号: TG142.71

Application of mechanical ball-milling technology in material preparation

More Information
  • 摘要: 综述了机械合金化、机械研磨以及机械涂覆三种机械球磨技术在材料制备领域中的应用和作用机理,讨论了三种机械球磨技术在材料制备中的优势与弊端,展望了该技术的今后发展方向。
  • [1] Benjamin J S. Dispersion strengthened superalloys by mechanical alloying. Metall Trans, 1970, 1(10): 2934 https://ui.adsabs.harvard.edu/abs/1970MT......1.2943B/abstract
    [2] Atzmon M. In situ thermal observation of explosive compound-formation reaction during mechanical alloying. Phys Rev Lett, 1990, 64(4): 487 doi: 10.1103/PhysRevLett.64.487
    [3] Zhang X S, Ran G. Review of the reactive mechanism in mechanical alloying. Heat Treat Met, 2003, 28(6): 28 doi: 10.3969/j.issn.0254-6051.2003.06.009

    张先胜, 冉广. 机械合金化的反应机制研究进展. 金属热处理, 2003, 28(6): 28 doi: 10.3969/j.issn.0254-6051.2003.06.009
    [4] Zaluski L, Zaluska A, Strom-Olsen J O. Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J Alloys Compd, 1995, 217(2): 245 doi: 10.1016/0925-8388(94)01348-9
    [5] Liang G X, Huot J, Boily S, et al. Hydrogin storage in mechanically milled Mg–LaNi5 and MgH2–LaNi5 composites. J Alloys Compd, 2000, 297(1-2): 261 doi: 10.1016/S0925-8388(99)00592-7
    [6] Xu A L, Liu S P, Zhou S Q, et al. Progress in studies on mechanical alloying, J Chongqing Univ, 2005, 28(11): 84 doi: 10.11835/j.issn.1000-582X.2005.11.023

    徐安莲, 刘守平, 周上祺, 等. 机械合金化的研究进展. 重庆大学学报, 2005, 28(11): 84 doi: 10.11835/j.issn.1000-582X.2005.11.023
    [7] Ivanov E, Griqorieva T, Golubkova G, et al. Synthesis of nickel aluminides by mechanical alloying. Mater Lett, 1988, 7(1-2): 51 doi: 10.1016/0167-577X(88)90081-X
    [8] Li N, Geng G Q, Zhang H B, et al. Fe–Si intermetallics fabricated by mechanical alloying and annealing treatment. Hot Work Technol, 2005(8): 21 doi: 10.3969/j.issn.1001-3814.2005.08.009

    李宁, 耿刚强, 张海宝, 等. 机械合金化–退火法制备铁硅金属间化合物. 热加工工艺, 2005(8): 21 doi: 10.3969/j.issn.1001-3814.2005.08.009
    [9] Koch C C. The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostruct Mater, 1993, 2(2): 109 doi: 10.1016/0965-9773(93)90016-5
    [10] Eckert J, Schultz L, Urban K. Formation of quasicrystals by mechanical alloying. Appl Phys Lett, 1989, 55(2): 117 doi: 10.1063/1.102394
    [11] Kahn R W. Materials Science and Technology Series: Metal and Alloy Technology. Beijing: Science Press, 1999

    卡恩R W. 材料科学与技术丛书: 金属与合金工艺. 北京: 科学出版社, 1999
    [12] Tao J M, Huang S Z, Xu M C, et al. Study on the mechanical properties of pure bulk Al with nanocrystalline. J Mater Eng, 2009(6): 67 doi: 10.3969/j.issn.1001-4381.2009.06.016

    陶静梅, 黄素贞, 徐孟春, 等. 纯Al纳米晶体材料的力学性能研究. 材料工程, 2009(6): 67 doi: 10.3969/j.issn.1001-4381.2009.06.016
    [13] Zhang X, Wang H, Scatterergood R O, et al. Evolution of microstructure and mechanical properties of in situ consolidated bulk ultra-fine-grained and nanocrystalline Zn prepared by ball milling. Mater Sci Eng A, 2003, 344(1-2): 175 doi: 10.1016/S0921-5093(02)00422-7
    [14] Bonetti E, Pasquini L, Sampaolesi E. The influence of grain size on the mechanical properties of nanocrystalline aluminum. Nanostruct Mater, 1997, 9(1-8): 611 doi: 10.1016/S0965-9773(97)00137-2
    [15] Hayes R W, Witkin D, Zhou F, et al. Deformation and activation volumes of cryomilled ultrafine-grained aluminum. Acta Mater, 2004, 52(14): 4259 doi: 10.1016/j.actamat.2004.05.042
    [16] Han B J, He Q, Yang M. Investigation of surface grain refinement of AZ91D magnesium alloys by surface mechanical attrition treatment. Surf Technol, 2014, 43(4): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201404007.htm

    韩宝军, 何琼, 杨妙. 机械研磨处理AZ91D镁合金表面晶粒细化研究. 表面技术, 2014, 43(4): 32 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201404007.htm
    [17] Hao L, Lu Y, Sato H, et al. Influence of metal properties on the formation and evolution of metal coatings during mechanical coating. Metall Mater Trans A, 2013, 44(6): 2717 doi: 10.1007/s11661-013-1632-z
    [18] Tang X, Zha W S, Zhang G Y, et al. The effects of oxidation temperature on the microstructure and photocatalytic activity of the TiO2 coating. Mater Sci, 2017, 23(2): 103 https://matsc.ktu.lt/index.php/MatSc/article/view/15590
    [19] Shen Y F, Li Y C, Chen C, et al. Investigation of coating of alumina ceramic surface by metallic Cu through mechanical alloying. J Nanjing Univ Aeronaut Astronaut, 2012, 44(5): 762 doi: 10.3969/j.issn.1005-2615.2012.05.024

    沈以赴, 李永灿, 陈成, 等. Al2O3陶瓷表面机械合金化制备铜涂层研究. 南京航空航天大学学报, 2012, 44(5): 762 doi: 10.3969/j.issn.1005-2615.2012.05.024
    [20] Wang A P, Wang Z M, Zhang J, et al. Deposition of HVAF-sprayed Ni-based amorphous metallic coatings. J Alloys Compd, 2007, 440(1-2): 225 doi: 10.1016/j.jallcom.2006.09.003
    [21] Ding R D, Shen Y F, Li B, et al. Preparation of amorphous Ti–Cu coating by mechanical alloying. Chin J Nonferrous Met, 2012, 22(7): 2023 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201207024.htm

    丁润东, 沈以赴, 李博, 等. 机械合金化制备Ti–Cu非晶涂层. 中国有色金属学报, 2012, 22(7): 2023 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201207024.htm
    [22] Ding D, Zhou B, Fu W Y, et al. Varied crystalline orientation of anatase TiO2 nanotubes from[101] to[001] promoted by TiF62- ions and their enhanced photoelectrochemical performance. J Mater Sci, 2018, 53(5): 3332 doi: 10.1007/s10853-017-1754-6
    [23] Seadira T W P, Sadanandam G, Ntho T, et al. Preparation and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of glycerol. Appl Catal B, 2018, 222: 133 doi: 10.1016/j.apcatb.2017.09.072
    [24] Deng X Y, Zhang H X, Guo R N, et al. Effect of Ti3+ on enhancing photocatalytic and photoelectrochemical properties of TiO2 nanorods/nanosheets photoelectrode. Sep Purif Technol, 2018, 192: 329 doi: 10.1016/j.seppur.2017.10.029
    [25] Yoshida H, Lu Y, Nakayama H, et al. Fabrication of TiO2 film by mechanical coating technique and its photocatalytic activity. J Alloys Compd, 2009, 475(1): 383 https://www.sciencedirect.com/science/article/pii/S092583880801147X
    [26] Takaya S, Lu Y, Guan S J, et al. Fabrication of the photocatalyst thin films of nano-structured potassium titanate by molten salt treatment and its photocatalytic activity. Surf Coat Technol, 2015, 275: 260 doi: 10.1016/j.surfcoat.2015.05.009
  • 加载中
计量
  • 文章访问数:  505
  • HTML全文浏览量:  324
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-25
  • 刊出日期:  2018-08-27

目录

    /

    返回文章
    返回