二硫化钼性能及应用研究进展

李晶 王宇晴 刘东新 何凯 路琳

李晶, 王宇晴, 刘东新, 何凯, 路琳. 二硫化钼性能及应用研究进展[J]. 粉末冶金技术, 2021, 39(5): 471-478. doi: 10.19591/j.cnki.cn11-1974/tf.2021020008
引用本文: 李晶, 王宇晴, 刘东新, 何凯, 路琳. 二硫化钼性能及应用研究进展[J]. 粉末冶金技术, 2021, 39(5): 471-478. doi: 10.19591/j.cnki.cn11-1974/tf.2021020008
LI Jing, WANG Yu-qing, LIU Dong-xin, HE Kai, LU Lin. Research progress on the properties and application of molybdenum disulfide[J]. Powder Metallurgy Technology, 2021, 39(5): 471-478. doi: 10.19591/j.cnki.cn11-1974/tf.2021020008
Citation: LI Jing, WANG Yu-qing, LIU Dong-xin, HE Kai, LU Lin. Research progress on the properties and application of molybdenum disulfide[J]. Powder Metallurgy Technology, 2021, 39(5): 471-478. doi: 10.19591/j.cnki.cn11-1974/tf.2021020008

二硫化钼性能及应用研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2021020008
基金项目: 国家重点研发计划资助项目(大尺寸高纯稀有金属制品制备技术:SQ2017YFGX010031)
详细信息
    通讯作者:

    E-mail:ljingjing12@163.com

  • 中图分类号: TF125; TG146.4+12

Research progress on the properties and application of molybdenum disulfide

More Information
  • 摘要: 二硫化钼(MoS2)具有特殊层状结构和特有的性质,被广泛应用于电子器件、催化剂、生物医疗等领域。文中论述了MoS2的润滑性能、光电性能、催化降解性能,介绍了MoS2在锂离子电池、超级电容器、生物医疗、生物传感器、光催化等领域的应用研究现状,结合研究背景和发展现状提出了MoS2未来的发展趋势。
  • 图  1  MoS2的三维结构(a)和3种晶体结构(b)

    Figure  1.  3D structure (a) and three crystal structures (b) of MoS2

    图  2  MoS2薄膜的紫外和光致发光图:(a)紫外吸收图[24];(b)光致发光图[25]

    Figure  2.  Ultraviolet and photoluminescence of the MoS2 thin films: (a) UV absorption[24]; (b) photoluminescence[25]

    图  3  MoS2能带图(a)[26]和载流子迁移率随温度变化(b)[28]

    Figure  3.  Energy band (a)[26] and the carrier mobility change with temperature (b)[28] of MoS2

    图  4  MoS2/C复合材料二维层状结构锂离子嵌脱(a)及循环圈数随快速充放电的容量变化(b)[30]

    Figure  4.  2D layered structure with lithium ion intercalation and desorption (a) and the number of cycles varies with the capacity of fast charge and discharge (b) of MoS2/C composite[30]

    图  5  PHA-Ch/MoS2纳米复合材料的抗菌活性

    Figure  5.  Antibacterial activity of the PHA-Ch/MoS2 nanocomposites

    图  6  gMoS2@Gr纳米复合材料电催化剂析氢反应

    Figure  6.  Hydrogen evolution reaction of the gMoS2@Gr nanocomposite as electrocatalysts

    图  7  MoS2用于氢能获取的应用[39]:(a)氢能获取示意图;(b)电流密度10 mA·cm−2时随着循环次数的增加所需的过电位稳定性

    Figure  7.  MoS2 application for the hydrogen energy acquisition[39]: (a) schematic diagram of hydrogen energy acquisition; (b) overpotential stability required to drive 10 mA·cm−2 versus the number of cycles

    表  1  常用MoS2干膜组份及用途

    Table  1.   Components and application of MoS2 solid lubricant films

    名称配方使用方法和用途
    淡金水膜MoS2,25~30份;无水乙醇,50份;淡金水,15~20份(淡金水配方,按质量分数:虫胶13%,松香3%,正丁醇42%,无水乙醇42%)适用于齿轮、涡轮、轴套和导轨等
    尼龙膜MoS2粉,50份;尼龙1010粉,100份可以冷喷(常温)和热喷(180~200 ℃)。适用于齿轮箱、光杆和丝杆等
    聚乙烯膜MoS2粉,10份;低压聚乙烯,90份聚乙烯熔化后喷涂。适用于挂轮箱、溜板箱、尾座等
    环氧树脂膜MoS2粉,140份;环氧树脂,100份;磷苯二甲酸二丁酯,20份;乙二胺,10份;丙酮,300~400份;MoS2粉,140份;环氧树脂618#,50份;酚醛树脂2127#,20份;环己酮,15份;丙酮,80份丙酮的数量还可适量增加,调稀一些便于施工。在空气中干燥0.5 h,放入160~200 ℃烘箱中固化23 h,冷却后即可使用。
    聚酰亚胺树脂膜MoS2粉,50 g;二甲基二苯醚(升华品),7 g;均苯四甲酸二酐(升华品),8 g;二甲基酰胺(溶剂),100 mL先用溶剂溶解两种升华品,不断搅拌,在完全溶解后加入MoS2粉即可喷涂。固化条件为80 ℃固化0.5 h,100 ℃固化1 h,200 ℃固化1 h,300 ℃固化1 h。适用于机床齿轮等。
    水玻璃膜MoS2粉,200份;水玻璃,100份;硫化铅,20份;蒸馏水,适量蒸馏水用量以便于喷涂为原则。喷涂后在120 ℃下烘干1.5 h。适用于齿轮等。
    下载: 导出CSV
  • [1] Jia Y, Wei M, Gao L L, et al. Modification of molybdenum disulfide and its application research. Chem Eng, 2019, 33(3): 53

    贾园, 魏萌, 高乐乐, 等. 二硫化钼的表面改性及其应用研究进展. 化学工程师, 2019, 33(3): 53
    [2] Sun T, Liu X, Li Z, et al. Graphene-wrapped CNT@MoS2 hierarchical structure: synthesis, characterization and electrochemical application in supercapacitors. New J Chem, 2017, 41(15): 7142
    [3] Kumar R, Sahoo S, Joanni E, et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res, 2019, 12(11): 2655 doi: 10.1007/s12274-019-2467-8
    [4] Sun T H, Li Z P, Liu X H, et al. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors. J Power Sources, 2016, 331(1): 180
    [5] Vilian A T E, Dinesh B, Kang S M, et al. Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications. Mikrochim Acta, 2019, 186(3): 203 doi: 10.1007/s00604-019-3287-y
    [6] Raghu M S, Kumar K Y, Rao S, et al. Simple fabrication of reduced graphene oxide-few layer MoS2 nanocomposite for enhanced electrochemical performance in supercapacitors and water purification. Physica B, 2018, 537(9): 336
    [7] Min M, Saenz G A, Kaul A B. Optoelectronic properties of graphene quantum dots with molybdenum disulfide. MRS Adv, 2019, 4(10): 615 doi: 10.1557/adv.2019.50
    [8] Li X, Zhang C F, Xin S, et al. Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors. ACS Appl Mater Interfaces, 2016, 8(33): 21373 doi: 10.1021/acsami.6b06762
    [9] Pak J, Min M, Cho K, et al. Improved photoswitching response times of MoS2 field-effect transistors by stacking p-type copper phthalocyanine layer. Appl Phys Lett, 2016, 109(18): 183502 doi: 10.1063/1.4966668
    [10] Wu J Y, Chun Y T, Li S P, et al. Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv Mater, 2018, 30(7): 1705880 doi: 10.1002/adma.201705880
    [11] Hossain R F, Deaguero I G, Boland T, et al. Biocompatible, large-format, inkjet printed heterostructure MoS2-graphene photodetectors on conformable substrates. npj 2D Mater Appl, 2017, 1(1): 1417
    [12] Zhuang Y T, Zhang X, Wang D H, et al. Three-dimensional molybdenum disulfide/graphene hydrogel with tunable heterointerfaces for high selective Hg(II) scavenging. J Colloid Interface Sci, 2018, 514(2): 715
    [13] Wei R, Tian X, Hu Z, et al. Vertically standing layered MoS2 nanosheets on TiO2 nanofibers for enhanced nonlinear optical property. Opt Express, 2016, 24(25): 25337
    [14] Patil U M, Nam M S, Kang S, et al. Fabrication of ultra-high energy and power asymmetric supercapacitors based on hybrid 2D MoS2/graphene oxide composite electrodes: a binder-free approach. RSC Adv, 2016, 6(49): 43261 doi: 10.1039/C6RA00670A
    [15] Choi M, Hwang J, Setiadi H, et al. One-pot synthesis of molybdenum disulfide reduced graphene oxide (MoS2-RGO) composites and their high electrochemical performance as an anode in lithium ion batteries. J Supercrit Fluids, 2017, 127(4): 81
    [16] Xie H T, Xiong X P. A porous molybdenum disulfide and reduced graphene oxide nanocomposite (MoS2-rGO) with high adsorption capacity for fast and preferential adsorption towards Congo red. J Environ Chem Eng, 2017, 5(1): 1150 doi: 10.1016/j.jece.2017.01.044
    [17] Lu X, Lin Y W, Dong H F, et al. One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction. Sci Rep, 2017, 7(1): 42309 doi: 10.1038/srep42309
    [18] Govindasamy M, Chen S M, Mani V, et al. Nanocomposites composed of layered molybdenum disulfide and graphene for highly sensitive amperometric determination of methyl parathion. Mikrochim Acta, 2017, 184(3): 725 doi: 10.1007/s00604-016-2062-6
    [19] Ma H, Yang R X, Li C J. Advances in 2D transition metal dichalcogenides. Mater Rev, 2017, 31(3): 7

    马浩, 杨瑞霞, 李春静. 层状二硫化钼材料的制备和应用进展. 材料导报, 2017, 31(3): 7
    [20] Huang Z X, Lan J, Yang S Y, et al. Effect of MoS2 and graphite on friction properties of bronze oil bearing. Powder Metall Technol, 2020, 38(5): 363

    黄钊炫, 兰江, 杨诗钰, 等. MoS2和石墨对青铜基含油轴承摩擦性能的影响. 粉末冶金技术, 2020, 38(5): 363
    [21] Guo Q. Performance and application of MoS2 solid lubricants. Precis Manuf Autom, 2007, 12(3): 26 doi: 10.3969/j.issn.1009-962X.2007.03.007

    郭青. 二硫化钼固体润滑性能及其应用. 精密制造与自动化, 2007, 12(3): 26 doi: 10.3969/j.issn.1009-962X.2007.03.007
    [22] Han G H, Wang W, Huang Y H, et al. Synthesis and electrochemical properties of molybdenum disulfide/graphene composites // Characterization of Minerals, Metals, and Materials 2019. San Antonio, 2019: 247
    [23] Li R D, Zhang H, Pan Z W, et al. Research progress of 2D transition metal dichalcogenides. China Molybdenum Ind, 2018, 42(3): 6

    李瑞东, 张浩, 潘志伟, 等. 二维二硫化钼纳米薄膜材料的研究进展. 中国钼业, 2018, 42(3): 6
    [24] Zeng Z Y, Yin Z Y, Huang X, et al. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew Chem Int Ed, 2011, 50(47): 11093 doi: 10.1002/anie.201106004
    [25] Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano, 2011, 5(10): 7707 doi: 10.1021/nn202852j
    [26] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 2010, 105(13): 136805 doi: 10.1103/PhysRevLett.105.136805
    [27] Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B, 2011, 83(24): 245213 doi: 10.1103/PhysRevB.83.245213
    [28] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11): 699 doi: 10.1038/nnano.2012.193
    [29] Wang T Y, Shen L Y, Zuo Z C, et al. Progress of research and application on molybdenum disulfide 2D materials. Adv Mater Ind, 2016, 13(2): 54

    王谭源, 申兰耀, 左自成, 等. 二硫化钼二维材料的研究与应用进展. 新材料产业, 2016, 13(2): 54
    [30] Chang K, Chen W X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano, 2011, 5(6): 4720 doi: 10.1021/nn200659w
    [31] Krishnamoorthy K, Veerasubramani G K, Radhakrishnan S, et a1. Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures. Mater Res Bull, 2014, 50(2): 499
    [32] Adhikari H, Ranaweera C, Gupta R, et a1. Facile hydrothermal synthesis of molybdenum disulfide (MoS2) as advanced electrodes for super capacitors applications. MRS Adv, 2016, 1(45): 3089 doi: 10.1557/adv.2016.421
    [33] Mukheem A, Shahabuddin S, Akbar N, et al. Fabrication of biopolymer polyhydroxyalkanoate/chitosan and 2D molybdenum disulfide-doped scaffolds for antibacterial and biomedical applications. Appl Microbiol Biotechnol, 2020, 104(1): 3121
    [34] Wu H J, Li Y, Li Q. Progress of research on synthesis and application of MoS2 micro/nanomaterial. New Chem Mater, 2016, 44(9): 16

    吴会杰, 李元, 李庆. 二硫化钼微/纳米材料的合成及研究进展. 化工新型材料, 2016, 44(9): 16
    [35] Liu H, Su X, Duan C Y, et al. A novel hydrogen peroxide biosensor based on immobilized hemoglobin in 3D flower-like MoS2 microspheres structure. Mater Lett, 2014, 122(5): 182
    [36] Posudievsky O Y, Kozarenko O A, Dyadyun V S, et al. Efficient mechanochemical preparation of graphene-like molybdenum disulfide and graphene-based composite electrocatalysts for hydrogen evolution reaction. Electrocatalysis, 2019, 10(5): 477 doi: 10.1007/s12678-019-00532-7
    [37] Qureshi N, Arbuj S, Shinde M, et al. Swift tuning from spherical molybdenum microspheres to hierarchical molybdenum disulfide nanostructures by switching from solvothermal to hydrothermal synthesis route. Nano Converg, 2017, 4(1): 25 doi: 10.1186/s40580-017-0119-9
    [38] Zhao D. Synthesis of MoS2 by Hydrothermal Method and Investigation for its Photo-Catalytic Properties [Dissertation]. Shenyang: Shenyang Normal University, 2017

    赵丹. 二硫化钼的水热制备及其光催化降解性能研究[学位论文]. 沈阳: 沈阳师范大学, 2017
    [39] Chen Z B, Cummins D, Reinecke B N, et al. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett, 2011, 11(10): 4168 doi: 10.1021/nl2020476
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1207
  • HTML全文浏览量:  8589
  • PDF下载量:  577
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 刊出日期:  2021-10-28

目录

    /

    返回文章
    返回