高导热金属基复合材料的制备与研究进展

陈贞睿 刘超 谢炎崇 潘志忠 任淑彬 曲选辉

陈贞睿, 刘超, 谢炎崇, 潘志忠, 任淑彬, 曲选辉. 高导热金属基复合材料的制备与研究进展[J]. 粉末冶金技术, 2022, 40(1): 40-52. doi: 10.19591/j.cnki.cn11-1974/tf.2021040002
引用本文: 陈贞睿, 刘超, 谢炎崇, 潘志忠, 任淑彬, 曲选辉. 高导热金属基复合材料的制备与研究进展[J]. 粉末冶金技术, 2022, 40(1): 40-52. doi: 10.19591/j.cnki.cn11-1974/tf.2021040002
CHEN Zhen-rui, LIU Chao, XIE Yan-chong, PAN Zhi-zhong, REN Shu-bin, QU Xuan-hui. Preparation and research process of high thermal conductivity metal matrix composites[J]. Powder Metallurgy Technology, 2022, 40(1): 40-52. doi: 10.19591/j.cnki.cn11-1974/tf.2021040002
Citation: CHEN Zhen-rui, LIU Chao, XIE Yan-chong, PAN Zhi-zhong, REN Shu-bin, QU Xuan-hui. Preparation and research process of high thermal conductivity metal matrix composites[J]. Powder Metallurgy Technology, 2022, 40(1): 40-52. doi: 10.19591/j.cnki.cn11-1974/tf.2021040002

高导热金属基复合材料的制备与研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2021040002
基金项目: 国家自然科学基金资助项目(51874038);广东省重点研发计划资助项目(2019B010942001);中央高校基本科研基金资助项目(FRF-NP-20-08)
详细信息
    通讯作者:

    E-mail: sbren@ustb.edu.cn

  • 中图分类号: TB333

Preparation and research process of high thermal conductivity metal matrix composites

More Information
  • 摘要: 随着电子器件芯片功率的不断提高,对散热材料的热物理性能提出了更高的要求。将高导热、低膨胀的增强相和高导热的金属进行复合得到的金属基复合材料,能够兼顾高的热导率和可调控的热膨胀系数,是理想的散热材料。本文对以Si、SiCp、金刚石、鳞片石墨为增强相的铜基及铝基复合材料的研究进展进行了总结,并就金属基复合材料目前存在的问题及未来的研究方向进行了展望。
  • 图  1  Si/Al复合材料热膨胀系数变化[6]

    Figure  1.  Thermal expansion coefficient of the Si/Al composites[6]

    图  2  SiCp/Al复合材料界面演化不同阶段及相应工艺参数[20]

    Figure  2.  Different stages of the interface evolution in the SiCp/Al composites and the corresponding technical parameters[20]

    图  3  DEM预测不同镀层厚度复合材料的热导率[8]

    Figure  3.  Thermal conductivity of the composites with the different coating thicknesses predicted by DEM[8]

    图  4  Mo2C@金刚石/铜复合材料热导率[30]

    Figure  4.  Thermal conductivity of the Mo2C@Diamond/Cu composites[30]

    图  5  在基体添加合金元素的金刚石/铜复合材料热导率和热膨胀系数:(a)Cr;(b)B[31]

    Figure  5.  Thermal conductivity and thermal expansion coefficient of the Diamond/Cu composites add by the different alloy elements in the matrix: (a) Cr; (b) B[31]

    图  6  在基体中添加B元素的金刚石/铜复合材料的导热系数[32]

    Figure  6.  Thermal conductivity of the Diamond/Cu composites add by B element in the matrix[32]

    图  9  鳞片石墨/铜复合材料热导率[36]

    Figure  9.  Thermal conductivity of the flake graphite/copper composites[36]

    图  10  鳞片石墨角度对铜复合材料热导率的影响(a)和鳞片石墨体积分数对铜复合材料热膨胀系数的影响(b)[37]

    Figure  10.  Influence of the flake graphite angle on the thermal conductivity of the copper composites (a) and the effect of the flake graphite volume fraction on the thermal expansion coefficient of the copper composites (b)[37]

    图  11  热压法工艺流程示意图[39]

    Figure  11.  Schematic diagram of the hot pressing method[39]

    图  12  镀钛对复合材料热膨胀系数(a)和热导率(b)的影响[42]

    Figure  12.  Effect of titanium coating on thermal expansion coefficient (a) and thermal conductivity (b) of the composites[42]

    图  13  放电等离子烧结工艺流程示意图[50]

    Figure  13.  Schematic diagram of the spark plasma sintering method[50]

    表  1  常用电子封装材料的热物理性能[45]

    Table  1.   Thermophysical properties of the common electronic packaging materials[45]

    材料密度 / (g·cm−3)热导率 / (W·m−1·K−1)热膨胀系数 / (10−6·K−1)
    Si2.301504.1
    GaAs5.30395.8
    Al2O3 (96%)3.70217.3
    BeO2.902506.7~8.0
    AlN3.2670~2603.5
    SiC3.1865~2003.5
    Kovar8.10175.2
    Inovar8.04110.4
    W/Cu15.702007.0
    Mo/Cu10.0039817.8
    下载: 导出CSV

    表  2  几种常用高导热铝基复合材料性能

    Table  2.   Properties of the common high thermal conductivity aluminum matrix composites

    铝基复合
    材料
    密度 / (g·cm−3)热导率 / (W·m−1·K−1)热膨胀系数 / (10−6·K−1)文献
    Sip/Al2.3~2.7120~1506~20[6]
    SiCp/Al~3.0150~2008~20[7]
    Diamond/Al~3.5300~4304~9[8-9]
    下载: 导出CSV

    表  3  高导热用金属基复合材料制备方法及性能

    Table  3.   Preparation methods and properties of the metal matrix composites for the high thermal conductivity

    材料制备方法界面改性方法热导率 / (W·m−1·K−1)热膨胀系数 / (10−6K−1)文献
    Sip/Al热压烧结120~1406~12[6]
    Sip/Al放电等离子烧结110~1507~17[64]
    Sip/Al铸造法100~1508[65]
    Sip/Al熔渗法90~1305~8[11]
    SiCp/Al热压烧结180~270[20]
    SiCp/Al放电等离子烧结160~19114~23[53]
    SiCp/Al熔渗法~2308[7]
    金刚石/Al热压烧结300~4306~10[42]
    金刚石/Al放电等离子烧结403[52]
    金刚石/Al熔渗法颗粒表面金属化320~3404.0~4.3[8]
    金刚石/Cu热压烧结颗粒表面金属化721[9]
    金刚石/Cu放电等离子烧结330~4008~14[26]
    金刚石/Cu高温高压烧结300~430、700~900[424446]
    金刚石/Cu熔渗法颗粒表面金属化580~657[30]
    金刚石/Cu熔渗法基体合金化7117.24[32]
    金刚石/Cu热轧法基体合金化433[34]
    金刚石/Cu热轧法基体合金化5507[35]
    鳞片石墨/Cu热压烧结基体合金化560~6285[41]
    鳞片石墨/Cu放电等离子烧结颗粒表面金属化466~532−1.4~12.8[38]
    下载: 导出CSV
  • [1] Molina-Jordá J M. Thermal conductivity of metal matrix composites with coated inclusions: a new modelling approach for interface engineering design in thermal management. J Alloys Compd, 2018, 745: 849 doi: 10.1016/j.jallcom.2018.02.092
    [2] Mallik S, Ekere N, Best C, et al. Investigation of thermal management materials for automotive electronic control units. Appl Therm Eng, 2011, 31(2-3): 355 doi: 10.1016/j.applthermaleng.2010.09.023
    [3] Chang G, Duan J L, Wang L H, et al. Thermal boundary conductance of a new generation of high thermal conductivity metal matrix composites: A review. Mater Rev, 2017, 31(7): 72 doi: 10.11896/j.issn.1005-023X.2017.07.011Thermal

    常国, 段佳良, 王鲁华, 等. 新一代高导热金属基复合材料界面热导研究进展. 材料导报, 2017, 31(7): 72 doi: 10.11896/j.issn.1005-023X.2017.07.011Thermal
    [4] Ren S B, Chen Z B, Qu X H. Research progress on metal matrix composites for electronic packaging. Jiangxi Sci, 2013, 31(4): 501 doi: 10.3969/j.issn.1001-3679.2013.04.020

    任淑彬, 陈志宝, 曲选辉. 电子封装用金属基复合材料的研究进展. 江西科学, 2013, 31(4): 501 doi: 10.3969/j.issn.1001-3679.2013.04.020
    [5] Liu Q. Research of Preparation and Thermal Properties of Discontinous Graphite/Copper Composites [Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    刘骞. 非连续石墨/铜复合材料的制备与热性能研究[学位论文]. 北京: 北京科技大学, 2015
    [6] Liu J W, Zhou X X, Xin H X. High-Si reinforced Al matrix composites prepared by powder semi-solid squeeze. J Alloys Compd, 2017, 726: 772 doi: 10.1016/j.jallcom.2017.08.049
    [7] Cui Y, Wang L F, Ren J Y. Multi-functional SiC/Al composites for aerospace applications. Chin J Aeronaut, 2008, 21(6): 578 doi: 10.1016/S1000-9361(08)60177-6
    [8] Guo K J. Design on Interface Construction and Research on Microstructure and Properties of High Thermal Conductivity Diamond/Aluminum Composite [Dissertation]. Beijing: North China University of Technology, 2020

    郭开金. 高导热金刚石/铝复合材料界面构建及组织性能研究[学位论文]. 北京: 北方工业大学, 2020
    [9] Zhang C, Wang R, Cai Z, et al. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing. Surf Coat Technol, 2015, 277: 299 doi: 10.1016/j.surfcoat.2015.07.059
    [10] Qu X, Zhang L, Wu M, et al. Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog Nat Sci Mater Int, 2011, 21(3): 189 doi: 10.1016/S1002-0071(12)60029-X
    [11] Jacobson D M, Ogilvy A J W, Leatham A G. Applications of Osprey lightweight controlled expansion (CE) alloys. Technol Rep, 2004: 1
    [12] Liu Y, Fan J, Hao X, et al. Advanced hermetic electronic packaging based on lightweight silicon/aluminum composite produced by powder metallurgy technique. Rare Met, 2020, 39: 1307 doi: 10.1007/s12598-016-0833-1
    [13] Zhang Z Q. Study on Preparation of High Silicon Sip/6061Al Composites by Atmospheric Sintering [Dissertation]. Hefei: Hefei University of Technology, 2017

    张志麒. 常压烧结制备高硅Sip/6061Al复合材料的研究[学位论文]. 合肥: 合肥工业大学, 2017
    [14] Zuo L, Zhao X, Li Z, et al. A review of friction stir joining of SiCp/Al composites. Chin J Aeronaut, 2020, 33(3): 792 doi: 10.1016/j.cja.2019.07.019
    [15] Hao S M. Study on Preparation, Micro Structure and Properties of Medium Volume Fraction SiCp/Al Composites [Dissertation]. Zhengzhou: Zhengzhou University, 2015

    郝世明. 中体积分数SiCp/Al复合材料的制备和微结构及性能研究[学位论文]. 郑州: 郑州大学, 2015
    [16] Wu M W, Hua L, Zhou J X, et al. Advances in thermal conductive aluminum alloys and aluminum matrix composites. Mater Rev, 2018, 32(9): 1486 doi: 10.11896/j.issn.1005-023X.2018.09.013

    吴孟武, 华林, 周建新, 等. 导热铝合金及铝基复合材料的研究进展. 材料导报, 2018, 32(9): 1486 doi: 10.11896/j.issn.1005-023X.2018.09.013
    [17] Zhang D, Tan Z Q, Xiong D B, et al. Application and prospect of metal matrix composites for thermal management: an overview. Mater China, 2018, 37(12): 994

    张荻, 谭占秋, 熊定邦, 等. 热管理用金属基复合材料的应用现状及发展趋势. 中国材料进展, 2018, 37(12): 994
    [18] Chen C W, Lee S L, Lin J C, et al. Effects of Sip size and volume fraction on properties of Al/Sip composites. Mater Lett, 2002, 52(4-5): 334 doi: 10.1016/S0167-577X(01)00418-9
    [19] Li Z H, Feng Z J, Li Y F, et al. The development of SiCp/Al matrix composites and its preparative technique and application status // Collection of Chinese Casting Activities. Chengdu, 2016: 332

    李泽华, 冯志军, 李宇飞, 等. SiC颗粒增强铝基复合材料发展历程及制备方法与应用现状 // 中国铸造活动周论文集. 成都, 2016: 332
    [20] Chen Z, Tan Z, Ji G, et al. Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites. Adv Eng Mater, 2015, 17(7): 1076 doi: 10.1002/adem.201400412
    [21] Johnson W B, Sonuparlak B. Diamond/Al metal matrix composites formed by the pressureless metal infiltration process. J Mater Res, 1993, 8(5): 1169 doi: 10.1557/JMR.1993.1169
    [22] Natishan P M, Everett R K, Glesener J W, et al. Electrochemical behavior of diamond-reinforced composites. Mater Sci Eng A, 1995, 197(1): 79 doi: 10.1016/0921-5093(94)09738-0
    [23] Beffort O, Vaucher S, Khalid F A. On the thermal and chemical stability of diamond during processing of Al/diamond composites by liquid metal infiltration (squeeze casting). Diamond Relat Mater, 2004, 13(10): 1834 doi: 10.1016/j.diamond.2004.04.014
    [24] Ruch P W, Beffort O, Kleiner S, et al. Selective interfacial bonding in Al (Si)–diamond composites and its effect on thermal conductivity. Compos Sci Technol, 2006, 66(15): 2677 doi: 10.1016/j.compscitech.2006.03.016
    [25] Feng H, Yu J K, Xue C, et al. Microstructure and thermal expansion of diamond/Al composites used for electronic packaging. Hot Working Technol, 2010, 39(14): 59 doi: 10.3969/j.issn.1001-3814.2010.14.019

    冯号, 于家康, 薛晨, 等. 电子封装用金刚石/铝复合材料的显微组织与热膨胀性能. 热加工工艺, 2010, 39(14): 59 doi: 10.3969/j.issn.1001-3814.2010.14.019
    [26] Kerns J A, Colella N J, Makowiecki D, et al. Dymalloy: a composite substrate for high power density electronic components // International Symposium on Microelectronics: Showcasing the Stars of Microelectronics and International Symposium on Ball Grid Array. Los Angeles, 1995: 22
    [27] Tang S Y, Liu X X, Zhang K W, et al. Friction and wear performance of nano-graphite/Al matrix composite material. Mater Mech Eng, 2007, 31(3): 43

    唐仕英, 刘晓新, 郑开伟, 等. 纳米石墨/铝基复合材料的摩擦磨损性能. 机械工程材料, 2007, 31(3): 43
    [28] Luo W, Wang Y, Xue L, et al. Influence factors and research progress of preparing high thermal conductivity diamond copper composites. Sichuan Metall, 2020, 42(6): 2 doi: 10.3969/j.issn.1001-5108.2020.06.002

    罗伟, 王宇, 薛令, 等. 制备高导热金刚石/铜复合材料的影响因素及研究进展. 四川冶金, 2020, 42(6): 2 doi: 10.3969/j.issn.1001-5108.2020.06.002
    [29] Abyzov A M, Kidalov S V, Shakhov F M. Filler-matrix thermal boundary resistance of diamond-copper composite with high thermal conductivity. Phys Solid State, 2012, 54(1): 210 doi: 10.1134/S1063783412010027
    [30] Ma S, Zhao N, Shi C, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl Surf Sci, 2017, 402: 372 doi: 10.1016/j.apsusc.2017.01.078
    [31] Weber L, Tavangar R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites. Scr Mater, 2007, 57(11): 988 doi: 10.1016/j.scriptamat.2007.08.007
    [32] Fan Y, Guo H, Xu J, et al. Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration. Int J Miner Metall Mater, 2011, 18(4): 472 doi: 10.1007/s12613-011-0465-2
    [33] Mizuuchi K, Inoue K, Agari Y, et al. Effect of boron addition on the thermal properties of diamond-particle-dispersed Cu-matrix composites fabricated by SPS. J Mater Sci Chem Eng, 2016, 4(9): 1
    [34] Jia S Q, Bolzoni L, Li T, et al. Unveiling the interface characteristics and their influence on the heat transfer behavior of hot-forged Cu-Cr/Diamond composites. Carbon, 2021, 172: 390 doi: 10.1016/j.carbon.2020.10.036
    [35] Lei L, Bolzoni L, Yang F. High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated-diamond composite. Carbon, 2020, 168: 553
    [36] Hutsch T, Schubert T, Weissgaerber T, et al. Graphite metal composites with tailored physical properties. Emerg Mater Res, 2012, 1(2): 107 doi: 10.1680/emr.11.00021
    [37] Yang L, Miyoshi Y, Sugio K, et al. Effect of graphite orientation distribution on thermal conductivity of Cu matrix composite. Mater Chem Phys, 2021, 257: 123702 doi: 10.1016/j.matchemphys.2020.123702
    [38] Chen J, Ren S, He X, et al. Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering. Carbon, 2017, 121: 25 doi: 10.1016/j.carbon.2017.05.082
    [39] Moustafa S, Daoush W, Ibrahim A, et al. Hot forging and hot pressing of AlSi powder compared to conventional powder metallurgy route. Mater Sci Appl, 2011, 2(8): 1127
    [40] Gorbatyuk S M, Pashkov A N, Zarapin A Y, et al. Development of hot-pressing technology for production of aluminum-based metal-matrix composite materials. Metallurgist, 2019, 62(11): 1261
    [41] Ren S B, Chen J H, He X B, et al. Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering. Carbon, 2018, 127: 412 doi: 10.1016/j.carbon.2017.11.033
    [42] Xue C, Bai H, Lü J L, et al. Effect of Ti coating on microstructure and thermal property of diamond/Al composite. Cement Carb, 2016, 33(4): 217

    薛晨, 白华, 吕继磊, 等. 钛镀层对金刚石/铝导热复合材料的显微组织与热学性能的影响. 硬质合金, 2016, 33(4): 217
    [43] Ekimov E A, Suetin N V, Popovich A F, et al. Thermal conductivity of diamond composites sintered under high pressures. Diamond Relat Mater, 2008, 17(4-5): 838 doi: 10.1016/j.diamond.2007.12.051
    [44] Hou L, Shen W X, Fang C, et al. High thermal conductivity of diamond/al composites via high pressure and high temperature sintering. Chin J High Pressure Phys, 2020, 34(5): 93

    侯领, 沈维霞, 房超, 等. 高导热金刚石/铝复合材料的高温高压制备. 高压物理学报, 2020, 34(5): 93
    [45] Yoshida K, Morigami H. Thermal properties of diamond/copper composite material. Microelectron Reliab, 2004, 44(2): 303 doi: 10.1016/S0026-2714(03)00215-4
    [46] Hu M H, Yu K P, Bi N, et al. Effect of diamond size on properties of particles reinforced diamond/Cu composites. J Funct Mater, 2018, 49(1): 1059

    胡美华, 于昆鹏, 毕宁, 等. 金刚石粒度对颗粒增强铜基复合材料性能影响的研究. 功能材料, 2018, 49(1): 1059
    [47] Zhao L, Song P X, Zhang Y J, et al. Study on preparation of diamond/copper composites by high temperature and high pressure method. Diamond Abras Eng, 2018, 38(2): 15

    赵龙, 宋平新, 张迎九, 等. 高温高压法制备金刚石/铜复合材料的研究. 金刚石与磨料磨具工程, 2018, 38(2): 15
    [48] Song S X, Wang Z, Shi G P. Heating mechanism of spark plasma sintering. Ceram Int, 2013, 39(2): 1393 doi: 10.1016/j.ceramint.2012.07.080
    [49] Orrù R, Licheri R, Locci A M, et al. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R, 2009, 63(4-6): 127 doi: 10.1016/j.mser.2008.09.003
    [50] Saheb N, Iqbal Z, Khalil A, et al. Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater, 2012, 2012: 1
    [51] Liu Q, He X B, Ren S B, et al. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating. J Alloys Compd, 2014, 587: 255 doi: 10.1016/j.jallcom.2013.09.207
    [52] Mizuuchi K, Inoue K, Agari Y, et al. Thermal conductivity of diamond particle dispersed aluminum matrix composites fabricated in solid–liquid co-existent state by SPS. Composites Part B, 2011, 42(5): 1029 doi: 10.1016/j.compositesb.2011.03.028
    [53] Zhang A A. Preparation of CNTs-SiC Composites and Its Effect on Properties of Aluminum Composites [Dissertation]. Xian: Xian University of Technology, 2019

    张昂昂. CNTs-SiC复合颗粒的制备及其对铝基复合材料性能的影响[学位论文]. 西安: 西安理工大学, 2019
    [54] Mazahery A, Shabani M O. Microstructural and abrasive wear properties of SiC reinforced aluminum-based composite produced by compocasting. Trans Nonferrous Met Soc China, 2013, 23(7): 1905 doi: 10.1016/S1003-6326(13)62676-X
    [55] Chaudhury S K, Singh A K, Sivaramakrishnan C S S, et al. Preparation and thermomechanical properties of stir cast Al-2Mg-11TiO2 (rutile) composite. Bull Mater Sci, 2004, 27(6): 517 doi: 10.1007/BF02707279
    [56] Su H, Gao W L, Mao C, et al. Study of stir cast SiCp/2024 composite. J Hunan Univ Nat Sci, 2009, 36(8): 54

    苏海, 高文理, 毛成, 等. 搅拌铸造SiCp/2024复合材料的研究. 湖南大学学报(自然科学版), 2009, 36(8): 54
    [57] Hashim J, Looney L, Hashmi M S J. The wettability of SiC particles by molten aluminium alloy. J Mater Process Technol, 2001, 119(1-3): 324 doi: 10.1016/S0924-0136(01)00975-X
    [58] Hashim J, Looney L, Hashmi M S J. Metal matrix composites: production by the stir casting method. J Mater Process Technol, 1999, 92-93: 1 doi: 10.1016/S0924-0136(99)00118-1
    [59] Li T, Li J Q, Wang W G, et al. A discussion on the main factors affecting thermal conductivity of carbon/metal matrix composites. Mater Rev, 2018, 32(15): 2640 doi: 10.11896/j.issn.1005-023X.2018.15.015

    李通, 李金权, 王文广, 等. 影响碳/金属复合材料导热性能的主要因素探讨. 材料导报, 2018, 32(15): 2640 doi: 10.11896/j.issn.1005-023X.2018.15.015
    [60] Monje I E, Louis E, Molina J M, et al. Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control. Composites Part A, 2013, 48: 9 doi: 10.1016/j.compositesa.2012.12.010
    [61] Che Z F. The Mechanism of Interfacial Structure Formation and Thermal Properties of Al/Diamond Composite [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    车子璠. 金刚石增强铝基复合材料界面形成机理及导热性能[学位论文]. 北京: 北京科技大学, 2017
    [62] Hong Q N, Ren S B, Chen Z B, et al. Effect of Co on properties of diamond/Cu composites by infiltration. Powder Metall Technol, 2015, 33(1): 49

    洪庆楠, 任淑彬, 陈志宝, 等. Co对熔渗法制备金刚石/Cu复合材料性能的影响. 粉末冶金技术, 2015, 33(1): 49
    [63] Zhang Y J, Dong Y H, Zhang R Q, et al. Numerical simulation of thermal conductivity of diamond/copper composites. Trans Mater Heat Treat, 2018, 39(6): 110

    张永杰, 董应虎, 张瑞卿, 等. 金刚石/铜复合材料导热性能的数值模拟. 材料热处理学报, 2018, 39(6): 110
    [64] Yu J H. Preparation and Properties of Sip/Al Composites by Spark Plasma Sintering [Dissertation]. Wuhan: Wuhan University of Technology, 2013

    余金辉. Sip/Al复合材料的放电等离子烧结及其热性能研究[学位论文]. 武汉: 武汉理工大学, 2013
    [65] Xiu Z Y, Zhang Q, Wu G H, et al. Study on properties of high reinforcement-content aluminum matrix composites for electronic packaging. Electron Packag, 2006(2): 16 doi: 10.3969/j.issn.1681-1070.2006.02.004

    修子扬, 张强, 武高辉, 等. 高体积分数电子封装用铝基复合材料性能研究. 电子与封装, 2006(2): 16 doi: 10.3969/j.issn.1681-1070.2006.02.004
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1994
  • HTML全文浏览量:  402
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回