激光选区熔化3D打印AlSi10Mg拉伸性能影响因素

王永慧 胡强 张金辉 刘英杰 盛艳伟 赵新明

王永慧, 胡强, 张金辉, 刘英杰, 盛艳伟, 赵新明. 激光选区熔化3D打印AlSi10Mg拉伸性能影响因素[J]. 粉末冶金技术, 2022, 40(2): 152-158. doi: 10.19591/j.cnki.cn11-1974/tf.2021120016
引用本文: 王永慧, 胡强, 张金辉, 刘英杰, 盛艳伟, 赵新明. 激光选区熔化3D打印AlSi10Mg拉伸性能影响因素[J]. 粉末冶金技术, 2022, 40(2): 152-158. doi: 10.19591/j.cnki.cn11-1974/tf.2021120016
WANG Yong-hui, HU Qiang, ZHANG Jin-hui, LIU Ying-jie, SHENG Yan-wei, ZHAO Xin-ming. Influencing factors on the tensile properties of selective laser melting 3D printing AlSi10Mg[J]. Powder Metallurgy Technology, 2022, 40(2): 152-158. doi: 10.19591/j.cnki.cn11-1974/tf.2021120016
Citation: WANG Yong-hui, HU Qiang, ZHANG Jin-hui, LIU Ying-jie, SHENG Yan-wei, ZHAO Xin-ming. Influencing factors on the tensile properties of selective laser melting 3D printing AlSi10Mg[J]. Powder Metallurgy Technology, 2022, 40(2): 152-158. doi: 10.19591/j.cnki.cn11-1974/tf.2021120016

激光选区熔化3D打印AlSi10Mg拉伸性能影响因素

doi: 10.19591/j.cnki.cn11-1974/tf.2021120016
基金项目: 国家重点研发计划资助项目(2021YFB3701201)
详细信息
    通讯作者:

    E-mail: xinming_zhao@126.com

  • 中图分类号: TG146.21

Influencing factors on the tensile properties of selective laser melting 3D printing AlSi10Mg

More Information
  • 摘要: 利用不同成形工艺、原料粉末和热处理制备激光选区熔化3D打印AlSi10Mg试样并进行拉伸性能研究,讨论了影响激光选区熔化3D打印AlSi10Mg拉伸性能的影响因素,包括3D打印成形工艺、粉末物理性能、热处理制度等。结果表明:激光能量密度通过影响试样相对密度进而对拉伸性能产生影响,能量密度过低时,试样孔洞大多分布在熔池交界处和熔池底部,能量密度过高时,试样孔洞多分布在熔池内部。球形度较高的粉末由于具有良好的物理性能和极低的空心粉率,其成形件拉伸性能较好。退火温度在270~300 ℃时,随着温度的升高,Si相逐渐长大发生粗化,拉伸强度呈递减趋势,断后伸长率逐渐升高。
  • 图  1  AlSi10Mg原料粉末显微形貌:(a)、(b)1#;(c)、(d)2#

    Figure  1.  Microstructures of the AlSi10Mg raw powders: (a) and (b) 1#; (c) and (d) 2#

    图  2  不同激光功率制备1# AlSi10Mg粉末3D打印件显微形貌:(a)230 W;(b)280 W;(c)330 W;(d)380 W;(e)430 W;f)480 W

    Figure  2.  Microstructures of the 3D printed parts prepared by the different laser powers using 1# AlSi10Mg powders: (a) 230 W; (b) 280 W; (c) 330 W; (d) 380 W; (e) 430 W; (f) 480 W

    图  3  不同激光功率制备1# AlSi10Mg粉末3D打印沉积态试样拉伸性能

    Figure  3.  Tensile properties of the 3D printed deposited samples prepared by the different laser powers using 1# AlSi10Mg powders

    图  4  AlSi10Mg粉末3D打印件显微形貌:(a)1#打印件上部;(b)1#打印件中部;(c)1#打印件底部;(d)2#打印件上部;(e)2#打印件中部;(f)2#打印件底部

    Figure  4.  Microstructure of the AlSi10Mg powder 3D printed parts: (a) upper part of 1#; (b) middle part of 1#; (c) bottom part of 1#; (d) upper part of 2#; (e) middle part of 2#; (f) bottom part of 2#

    图  5  AlSi10Mg粉末3D打印沉积态试样拉伸断口显微形貌:(a)1#粉末;(b)2#粉末

    Figure  5.  Tensile fracture microstructure of the 3D printed deposited samples prepared using the different AlSi10Mg raw powders: (a) 1# powders; (b) 2# powders

    图  6  不同退火温度1#AlSi10Mg粉末3D打印件拉伸性能

    Figure  6.  Tensile properties of the 3D printed parts at different annealing temperatures using 1# AlSi10Mg powders

    图  7  不同退火温度1#AlSi10Mg粉末3D打印件微观形貌

    Figure  7.  Microstructure of the 3D printed parts at different annealing temperatures using 1# AlSi10Mg powders

    表  1  AlSi10Mg原料粉末化学成分(质量分数)

    Table  1.   Chemical composition of the AlSi10Mg raw powders %

    原料粉末编号SiMgFeMnTiCuOAl
    1#9.860.360.04<0.01<0.01<0.010.023余量
    2#9.760.340.04<0.01<0.01<0.010.051余量
    下载: 导出CSV

    表  2  AlSi10Mg原料粉末粒度分布

    Table  2.   Particle size distribution of the AlSi10Mg raw powders μm

    原料粉末编号D10D50D90
    1#19.8535.2351.21
    2#20.9537.6952.39
    下载: 导出CSV

    表  3  1# AlSi10Mg粉末成形工艺参数

    Table  3.   Forming process parameters of the 1# AlSi10Mg powders

    编号激光功率 / W扫描速度 / (mm·s−1)路径间距 / mm旋转角度 / (°)层厚 / μm
    A123013000.176730
    A228013000.176730
    A333013000.176730
    A438013000.176730
    A543013000.176730
    A648013000.176730
    下载: 导出CSV

    表  4  AlSi10Mg原料粉末物理性能

    Table  4.   Physical properties of the AlSi10Mg raw powders

    原料粉末
    编号
    流动性 / [s∙(50 g)‒1]松装密度 / (g∙cm‒3)振实密度 / (g∙cm‒3)空心粉率 / %
    1#1.31.54<3.00
    2#601.51.67<0.25
    下载: 导出CSV

    表  5  AlSi10Mg粉末3D打印沉积态试样拉伸性能

    Table  5.   Tensile properties of the 3D printed deposited samples prepared using the different AlSi10Mg raw powders

    原料粉末
    编号
    抗拉强度,
    Rm / MPa
    屈服强度,
    Rp0.2 / MPa
    断后伸长率,
    A / %
    1#46828110.5
    2#47429911.5
    下载: 导出CSV
  • [1] Aktürk M, Boy M, Gupta M K, et al. Numerical and experimental investigations of built orientation dependent Johnson-Cook model for selective laser melting manufactured AlSi10Mg. J Mater Res Technol, 2021, 15: 6244 doi: 10.1016/j.jmrt.2021.11.062
    [2] Javidani M, Arreguin-Zavala J, Danovitch J, et al. Additive manufacturing of AlSi10Mg alloy using direct energy deposition: microstructure and hardness characterization. J Therm Spray Technol, 2017, 26: 587 doi: 10.1007/s11666-016-0495-4
    [3] Li X D, Zhu Q F, Kong S P, et al. Study on the structure and properties of the AlSi10Mg samples produced by 3D printing. Mater Sci Technol, 2019, 27(2): 16 doi: 10.11951/j.issn.1005-0299.20180138

    李晓丹, 朱庆丰, 孔淑萍, 等. 3D打印AlSi10Mg合金组织性能研究. 材料科学与工艺, 2019, 27(2): 16 doi: 10.11951/j.issn.1005-0299.20180138
    [4] Arfan M, Altaf A, Abdus S, et al. Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing. Int J Lightweight Mater Manuf, 2019, 2(4): 288
    [5] Yu T, Hyer H, Sohn Y, et al. Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Mater Des, 2019, 182: 108062 doi: 10.1016/j.matdes.2019.108062
    [6] Wu L Z, Wen Y J, Zhang B C, et al. Research status of selective laser melting aluminum alloys. Powder Metall Technol, 2021, 39(6): 549

    吴灵芝, 温耀杰, 张百成, 等. 选区激光熔化铝合金制备研究现状. 粉末冶金技术, 2021, 39(6): 549
    [7] Zhao X M, Qi Y H, Yu Q C, et al. Study on microstructure and mechanical properties of AlSi10Mg alloy produced by 3D printing. Foundy Technol, 2016, 37(11): 2402

    赵晓明, 齐元昊, 于全成, 等. AlSi10Mg铝合金3D打印组织与性能研究. 铸造技术, 2016, 37(11): 2402
    [8] Yan T Q, Chen B Q, Tang P J, et al. Effect of powder layer thickness on quality and efficiency of AlSi10Mg alloy formed by selective laser melting. Chin J Lasers, 2021, 48(10): 52

    闫泰起, 陈冰清, 唐鹏钧, 等. 铺粉层厚对选区激光熔化成形AlSi10Mg合金质量及效率的影响. 中国激光, 2021, 48(10): 52
    [9] Liang E Q, Dai Y, Bai J, et al. Microstructure and tensile properties of annealing heat treated AlSi10Mg alloy fabricated by selective laser melting. J Mater Eng,http://kns.cnki.net/kcms/detail/11.1800.TB.20210804.1624.002.html

    梁恩泉, 代宇, 白静, 等. 退火态激光选区熔化成形AlSi10Mg合金组织与性能. 材料工程,http://kns.cnki.net/kcms/detail/11.1800.TB.20210804.1624.002.html
    [10] Yang X M, Jian H G, Zhang W, et al. Research on characterisitics of AlSi10Mg aluminum powder in the selective laser melting. New Technol New Process, 2021(7): 57

    杨孝梅, 蹇海根, 张唯, 等. 选区激光熔化AlSi10Mg粉末性能研究. 新技术新工艺, 2021(7): 57
    [11] Liu S W, Duan W C, Dong B B. Effect of PREP process parameters on properties of AlSi10Mg aluminum alloy powder for 3D printing. Nonferrous Met Eng, 2019, 9(9): 45

    刘少伟, 段望春, 董兵斌. PREP工艺参数对3D打印用AlSi10Mg铝合金粉末性能的影响. 有色金属工程, 2019, 9(9): 45
    [12] Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Mater Sci Eng A, 2006, 428(1-2): 148 doi: 10.1016/j.msea.2006.04.117
    [13] Ni X Q, Kong D C, Wen Y, et al. Influence factors and improvement methods on the porosity of 3D printing metal materials. Powder Metall Technol, 2019, 37(3): 163

    倪晓晴, 孔德成, 温莹, 等. 3D打印金属材料中孔隙率的影响因素和改善方法. 粉末冶金技术, 2019, 37(3): 163
    [14] Wang D, Ou Y H, Dou W H, et al. Research progress on spatter behavior in laser powder bed fusion. Chin J Lasers, 2020, 47(9): 1

    王迪, 欧远辉, 窦文豪, 等. 粉末床激光熔融过程中飞溅行为的研究进展. 中国激光, 2020, 47(9): 1
    [15] Li X, Zeng K L, He P J, et al. Effect of tightly coupled gas atomization parameters on the properties of metal powders used for 3D printing. Powder Metall Technol, 2021, 39(2): 172

    李响, 曾克里, 何鹏江, 等. 紧耦合气雾化参数对3D打印用金属粉末性能的影响. 粉末冶金技术, 2021, 39(2): 172
    [16] Feng Q N. Research on Process, Microstructures and Properties of AlSi10Mg Alloy Prepared by Laser Melting Deposition [Dissertation]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017

    冯秋娜. 激光熔化沉积成形AlSi10Mg合金的工艺与组织性能研究[学位论文]. 南京: 南京航空航天大学, 2017
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  1248
  • HTML全文浏览量:  87
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-19
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回