高级检索

SiC对粉碎烧结法制备P型Bi0.5Sb1.5Te3合金热电性能的影响

王小宇, 江威, 朱彬, 孙远涛, 向波, 黄中月, 杨双根, 祖方遒

王小宇, 江威, 朱彬, 孙远涛, 向波, 黄中月, 杨双根, 祖方遒. SiC对粉碎烧结法制备P型Bi0.5Sb1.5Te3合金热电性能的影响[J]. 粉末冶金技术, 2022, 40(1): 53-59. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010008
引用本文: 王小宇, 江威, 朱彬, 孙远涛, 向波, 黄中月, 杨双根, 祖方遒. SiC对粉碎烧结法制备P型Bi0.5Sb1.5Te3合金热电性能的影响[J]. 粉末冶金技术, 2022, 40(1): 53-59. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010008
WANG Xiao-yu, JIANG Wei, ZHU Bing, SUN Yuan-tao, XIANG Bo, HUANG Zhong-yue, YANG Shuang-gen, ZU Fang-qiu. Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method[J]. Powder Metallurgy Technology, 2022, 40(1): 53-59. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010008
Citation: WANG Xiao-yu, JIANG Wei, ZHU Bing, SUN Yuan-tao, XIANG Bo, HUANG Zhong-yue, YANG Shuang-gen, ZU Fang-qiu. Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method[J]. Powder Metallurgy Technology, 2022, 40(1): 53-59. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010008

SiC对粉碎烧结法制备P型Bi0.5Sb1.5Te3合金热电性能的影响

基金项目: 国家自然科学基金资助项目(5131073);安徽省自然科学基金资助项目(1808085ME108)
详细信息
    通讯作者:

    E-mail:wangxiaoyu1991@163.com(王小宇)

    fanqiuzu@hotmail.com(祖方遒)

  • 中图分类号: TG142.71

Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method

More Information
  • 摘要: 向粉碎法制备的Bi0.5Sb1.5Te3+5%Te(质量分数)合金粉体中混入不同体积分数的SiC颗粒,利用放电等离子体烧结法制备SiC复合块体材料,探究块体材料组织和热电性能的变化规律。研究发现:随着SiC体积分数的增加,块体材料的取向性弱化,组织细化,载流子浓度增加,迁移率降低;由于取向性弱化及组织细化,加强了声子散射,降低了晶格热导率。由于SiC复合块体材料的电学性能恶化,块体材料的无量纲热电优值(ZT)并未获得显著的提升;当SiC体积分数为0.40%时,SiC复合块体材料在322 K时具有最优的无量纲热电优值(ZT=~0.81)。
    Abstract: SiC particles in the different volume fraction were mixed into Bi0.5Sb1.5Te3+5%Te alloy powders (mass fraction) prepared by the pulverizing method. The mixed powders were sintered into the blocks by spark plasma sintering (SPS) method. The microstructure and thermoelectric properties of these block samples were investigated. The results show that, with the increase of SiC volume fraction, the orientation of the bulks is weakened, the microstructure is refined, the carrier concentration increases, and the mobility decreases. Due to the weakened orientation and the refined microstructure, the scattering of phonons is enhanced, leading to a reduced lattice thermal conductivity. However, due to the deterioration of the electrical properties for the blocks, the dimensionless thermoelectric value (ZT) of the bulks with SiC has no improvement. When the volume fraction of SiC is 0.40%, the block samples show the best thermoelectric performance with ZT = ~0.81 at 322 K.
  • 图  1   烧结块体样品沿垂直烧结压力方向上的X射线衍射图谱

    Figure  1.   XRD patterns of the bulk samples along the vertical sintering pressure direction

    图  2   添加不同体积分数SiC颗粒的烧结块体样品断口显微形貌:(a)0.00;(b)0.20;(c)0.40;(d)0.60

    Figure  2.   SEM images of the fracture surfaces of the sintered bulk samples added by SiC particles in the different volume fraction: (a) 0.00; (b) 0.20; (c) 0.40; (d) 0.60

    图  3   样品0.40显微组织形貌及能谱分析:(a)SiC颗粒显微形貌;(b)SiC颗粒被基体均匀包覆;(c)位置1能谱分析谱

    Figure  3.   SEM images and EDS patterns of the sample 0.40: (a) microstructure of SiC particles; (b) microstructure of SiC particles covered by the matrix; (c) EDS patterns at position 1

    图  4   样品0.40中各主要组元能谱面扫描分布

    Figure  4.   EDS mapping scanning of the sample 0.40 for the main elements

    图  5   材料电学性能随温度变化规律:(a)电导率;(b)Seebeck系数;(c)功率因子

    Figure  5.   Temperature dependence of the electrical properties for the bulk samples: (a) electrical conductivity; (b) Seebeck coefficient; (c) powder factor

    图  6   样品室温载流子浓度和迁移率随SiC体积分数变化规律

    Figure  6.   SiC volume fraction dependence of the carrier concentration and mobility for the bulk samples at room temperature

    图  7   Seebeck系数与载流子浓度之间的Pisarenko关系

    Figure  7.   Pisarenko relationship between the Seebeck coefficient and carrier concentration

    图  8   材料热学性能随温度变化规律:(a)热导率;(b)电子热导率;(c)晶格热导率和双极热导率

    Figure  8.   Temperature dependence of the thermal properties for the bulk samples. (a) thermal conductivity; (b) electron thermal conductivity; (c) lattice thermal conductivity and bipolar effect

    图  9   材料热电优值ZT随温度变化规律

    Figure  9.   Temperature dependence of ZT for the bulk samples

    表  1   块体样品在垂直烧结压力方向上沿着(00l)方向的取向因子

    Table  1   Orientation factor of the bulk samples along the direction of (00l) at the vertical sintering pressure direction

    样品0.000.200.400.60
    取向因子0.18210.15640.12940.1050
    下载: 导出CSV
  • [1]

    Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457 DOI: 10.1126/science.1158899

    [2]

    DiSalvo F J. Thermoelectric cooling and power generation. Science, 1999, 285(5428): 703 DOI: 10.1126/science.285.5428.703

    [3]

    Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials. Adv Mater, 2007, 19(8): 1043 DOI: 10.1002/adma.200600527

    [4]

    Ginting D, Lin C C, Lydia R, et al. High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95−x(PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation. Acta Mater, 2017, 131: 98

    [5]

    Takagiwa Y, Pei Y, Pomrehn G, et al. Dopants effect on the band structure of PbTe thermoelectric material. Appl Phys Lett, 2012, 101(9): 092102 DOI: 10.1063/1.4748363

    [6]

    Basu R, Bhattacharya S, Bhatt R, et al. Improved thermoelectric properties of Se-doped n-type PbTe1−xSex (0≤x≤1). J Electron Mater, 2013, 42(7): 2292 DOI: 10.1007/s11664-013-2645-5

    [7]

    Ohno S, Imasato K, Anand S, et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule, 2018, 2(1): 141 DOI: 10.1016/j.joule.2017.11.005

    [8]

    Gelbstein Y, Davidow J, Girard S N, et al. Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance. Adv Energy Mater, 2013, 3(6): 815

    [9]

    Kim Y M, Lydia R, Kim J H, et al. Enhancement of thermoelectric properties in liquid-phase sintered Te-excess bismuth antimony tellurides prepared by hot-press sintering. Acta Mater, 2017, 135: 297 DOI: 10.1016/j.actamat.2017.06.036

    [10]

    Hor Y S, Richardella A, Roushan P, et al. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B, 2009, 79(19): 195208 DOI: 10.1103/PhysRevB.79.195208

    [11]

    Zhu T, Hu L, Zhao X, et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci, 2016, 3(7): 1600004 DOI: 10.1002/advs.201600004

    [12]

    Zhu T, Liu Y, Fu C, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater, 2017, 29(14): 1605884 DOI: 10.1002/adma.201605884

    [13]

    Hu L, Wu H, Zhu T, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type Bismuth-Telluride-based solid solutions. Adv Energy Mater, 2015, 5(17): 1500411 DOI: 10.1002/aenm.201500411

    [14]

    Hu L P, Zhu T J, Wang Y G, et al. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater, 2014, 6(2): e88 DOI: 10.1038/am.2013.86

    [15]

    Zhai R, Hu L, Wu H, et al. Enhancing thermoelectric performance of n-type hot deformed bismuth-telluride-based solid solutions by nonstoichiometry-mediated intrinsic point defects. ACS Appl Mater Interfaces, 2017, 9(34): 28577 DOI: 10.1021/acsami.7b08537

    [16]

    Hu L, Zhu T, Liu X, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater, 2014, 24(33): 5211 DOI: 10.1002/adfm.201400474

    [17]

    Xu Z J, Hu L P, Ying P J, et al. Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation. Acta Mater, 2015, 84: 385 DOI: 10.1016/j.actamat.2014.10.062

    [18]

    Zhu B, Huang Z Y, Wang X Y, et al. Attaining ultrahigh thermoelectric performance of direction-solidified bulk n-type Bi2Te24Se0.6 via its liquid state treatment. Nano Energy, 2017, 42: 8

    [19]

    Jiang J, Chen L, Bai S, et al. Fabrication and thermoelectric performance of textured n-type Bi2(Te, Se)3 by spark plasma sintering. Mater Sci Eng B, 2005, 117(3): 334 DOI: 10.1016/j.mseb.2005.01.002

    [20]

    Mun H, Choi S M, Lee K H, et al. Boundary engineering for the thermoelectric performance of bulk alloys based on bismuth telluride. ChemSusChem, 2015, 8(14): 2312 DOI: 10.1002/cssc.201403485

    [21]

    Pei Y, Lalonde A, Iwanaga S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci, 2011, 4(6): 2085 DOI: 10.1039/c0ee00456a

    [22]

    Chen Z, Zhang X, Pei Y. Manipulation of phonon transport in thermoelectrics. Adv Mater, 2018, 30(17): 1705617 DOI: 10.1002/adma.201705617

    [23]

    Lostak P, Novotny R, Kroutil J, et al. Optical properties of Sb2‒xInxTe3 single crystals. Phys Status Solidi A, 1987, 104(2): 841 DOI: 10.1002/pssa.2211040238

    [24]

    Chen Z, Jian Z, Li W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater, 2017, 29(23): 1606768 DOI: 10.1002/adma.201606768

    [25]

    Tan G, Stoumpos C C, Wang S, et al. Subtle roles of Sb and S in regulating the thermoelectric properties of N-type PbTe to high performance. Adv Energy Mater, 2017, 7(18): 1700099 DOI: 10.1002/aenm.201700099

    [26]

    Biswas K, He J, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416): 414 DOI: 10.1038/nature11439

    [27]

    Lotgering F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. J Inorg Nucl Chem, 1959, 9(2): 113 DOI: 10.1016/0022-1902(59)80070-1

    [28]

    Ioffe A F. Semiconductor Thermoelements and Thermoelectric Cooling. London: Infosearch Limited, 1957

    [29]

    Wang X Y, Wang H J, Xiang B, et al. Thermoelectric performance of Sb2Te3-based alloys is improved by introducing PN junctions. ACS Appl Mater Interfaces, 2018, 10(27): 23277 DOI: 10.1021/acsami.8b01719

    [30]

    Wang S, Sun Y, Yang J, et al. High thermoelectric performance in Te-free (Bi, Sb)2Se3 via structural transition induced band convergence and chemical bond softening. Energy Environ Sci, 2016, 9(11): 3436 DOI: 10.1039/C6EE02674E

    [31]

    Hong M, Chen Z G, Yang L, et al. Enhancing the thermoelectric performance of SnSe1−xTex nanoplates through band engineering. J Mater Chem A, 2017, 5(21): 10713 DOI: 10.1039/C7TA02677C

    [32]

    Paul B, V A K, Banerji P. Embedded Ag-rich nanodots in PbTe: Enhancement of thermoelectric properties through energy filtering of the carriers. J Appl Phys, 2010, 108(6): 064322 DOI: 10.1063/1.3488621

    [33]

    Zhang C, De La Mata M, Li Z, et al. Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering. Nano Energy, 2016, 30: 630 DOI: 10.1016/j.nanoen.2016.10.056

    [34]

    Zhang Q, Ai X, Wang L, et al. Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv Funct Mater, 2015, 25(6): 966 DOI: 10.1002/adfm.201402663

图(9)  /  表(1)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  199
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-14
  • 网络出版日期:  2021-10-27
  • 刊出日期:  2022-02-27

目录

    /

    返回文章
    返回