SiC对粉碎烧结法制备P型Bi0.5Sb1.5Te3合金热电性能的影响

王小宇 江威 朱彬 孙远涛 向波 黄中月 杨双根 祖方遒

王小宇, 江威, 朱彬, 孙远涛, 向波, 黄中月, 杨双根, 祖方遒. SiC对粉碎烧结法制备P型Bi0.5Sb1.5Te3合金热电性能的影响[J]. 粉末冶金技术, 2022, 40(1): 53-59. doi: 10.19591/j.cnki.cn11-1974/tf.2020010008
引用本文: 王小宇, 江威, 朱彬, 孙远涛, 向波, 黄中月, 杨双根, 祖方遒. SiC对粉碎烧结法制备P型Bi0.5Sb1.5Te3合金热电性能的影响[J]. 粉末冶金技术, 2022, 40(1): 53-59. doi: 10.19591/j.cnki.cn11-1974/tf.2020010008
WANG Xiao-yu, JIANG Wei, ZHU Bing, SUN Yuan-tao, XIANG Bo, HUANG Zhong-yue, YANG Shuang-gen, ZU Fang-qiu. Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method[J]. Powder Metallurgy Technology, 2022, 40(1): 53-59. doi: 10.19591/j.cnki.cn11-1974/tf.2020010008
Citation: WANG Xiao-yu, JIANG Wei, ZHU Bing, SUN Yuan-tao, XIANG Bo, HUANG Zhong-yue, YANG Shuang-gen, ZU Fang-qiu. Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method[J]. Powder Metallurgy Technology, 2022, 40(1): 53-59. doi: 10.19591/j.cnki.cn11-1974/tf.2020010008

SiC对粉碎烧结法制备P型Bi0.5Sb1.5Te3合金热电性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2020010008
基金项目: 国家自然科学基金资助项目(5131073);安徽省自然科学基金资助项目(1808085ME108)
详细信息
    通讯作者:

    E-mail:wangxiaoyu1991@163.com(王小宇)

    fanqiuzu@hotmail.com(祖方遒)

  • 中图分类号: TG142.71

Effect of SiC on thermoelectric properties of P-type Bi0.5Sb1.5Te3 alloy prepared by pulverizing and sintering method

More Information
  • 摘要: 向粉碎法制备的Bi0.5Sb1.5Te3+5%Te(质量分数)合金粉体中混入不同体积分数的SiC颗粒,利用放电等离子体烧结法制备SiC复合块体材料,探究块体材料组织和热电性能的变化规律。研究发现:随着SiC体积分数的增加,块体材料的取向性弱化,组织细化,载流子浓度增加,迁移率降低;由于取向性弱化及组织细化,加强了声子散射,降低了晶格热导率。由于SiC复合块体材料的电学性能恶化,块体材料的无量纲热电优值(ZT)并未获得显著的提升;当SiC体积分数为0.40%时,SiC复合块体材料在322 K时具有最优的无量纲热电优值(ZT=~0.81)。
  • 图  1  烧结块体样品沿垂直烧结压力方向上的X射线衍射图谱

    Figure  1.  XRD patterns of the bulk samples along the vertical sintering pressure direction

    图  2  添加不同体积分数SiC颗粒的烧结块体样品断口显微形貌:(a)0.00;(b)0.20;(c)0.40;(d)0.60

    Figure  2.  SEM images of the fracture surfaces of the sintered bulk samples added by SiC particles in the different volume fraction: (a) 0.00; (b) 0.20; (c) 0.40; (d) 0.60

    图  3  样品0.40显微组织形貌及能谱分析:(a)SiC颗粒显微形貌;(b)SiC颗粒被基体均匀包覆;(c)位置1能谱分析谱

    Figure  3.  SEM images and EDS patterns of the sample 0.40: (a) microstructure of SiC particles; (b) microstructure of SiC particles covered by the matrix; (c) EDS patterns at position 1

    图  4  样品0.40中各主要组元能谱面扫描分布

    Figure  4.  EDS mapping scanning of the sample 0.40 for the main elements

    图  5  材料电学性能随温度变化规律:(a)电导率;(b)Seebeck系数;(c)功率因子

    Figure  5.  Temperature dependence of the electrical properties for the bulk samples: (a) electrical conductivity; (b) Seebeck coefficient; (c) powder factor

    图  6  样品室温载流子浓度和迁移率随SiC体积分数变化规律

    Figure  6.  SiC volume fraction dependence of the carrier concentration and mobility for the bulk samples at room temperature

    图  7  Seebeck系数与载流子浓度之间的Pisarenko关系

    Figure  7.  Pisarenko relationship between the Seebeck coefficient and carrier concentration

    图  8  材料热学性能随温度变化规律:(a)热导率;(b)电子热导率;(c)晶格热导率和双极热导率

    Figure  8.  Temperature dependence of the thermal properties for the bulk samples. (a) thermal conductivity; (b) electron thermal conductivity; (c) lattice thermal conductivity and bipolar effect

    图  9  材料热电优值ZT随温度变化规律

    Figure  9.  Temperature dependence of ZT for the bulk samples

    表  1  块体样品在垂直烧结压力方向上沿着(00l)方向的取向因子

    Table  1.   Orientation factor of the bulk samples along the direction of (00l) at the vertical sintering pressure direction

    样品0.000.200.400.60
    取向因子0.18210.15640.12940.1050
    下载: 导出CSV
  • [1] Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457 doi: 10.1126/science.1158899
    [2] DiSalvo F J. Thermoelectric cooling and power generation. Science, 1999, 285(5428): 703 doi: 10.1126/science.285.5428.703
    [3] Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials. Adv Mater, 2007, 19(8): 1043 doi: 10.1002/adma.200600527
    [4] Ginting D, Lin C C, Lydia R, et al. High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95−x(PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation. Acta Mater, 2017, 131: 98
    [5] Takagiwa Y, Pei Y, Pomrehn G, et al. Dopants effect on the band structure of PbTe thermoelectric material. Appl Phys Lett, 2012, 101(9): 092102 doi: 10.1063/1.4748363
    [6] Basu R, Bhattacharya S, Bhatt R, et al. Improved thermoelectric properties of Se-doped n-type PbTe1−xSex (0≤x≤1). J Electron Mater, 2013, 42(7): 2292 doi: 10.1007/s11664-013-2645-5
    [7] Ohno S, Imasato K, Anand S, et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule, 2018, 2(1): 141 doi: 10.1016/j.joule.2017.11.005
    [8] Gelbstein Y, Davidow J, Girard S N, et al. Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance. Adv Energy Mater, 2013, 3(6): 815
    [9] Kim Y M, Lydia R, Kim J H, et al. Enhancement of thermoelectric properties in liquid-phase sintered Te-excess bismuth antimony tellurides prepared by hot-press sintering. Acta Mater, 2017, 135: 297 doi: 10.1016/j.actamat.2017.06.036
    [10] Hor Y S, Richardella A, Roushan P, et al. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B, 2009, 79(19): 195208 doi: 10.1103/PhysRevB.79.195208
    [11] Zhu T, Hu L, Zhao X, et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci, 2016, 3(7): 1600004 doi: 10.1002/advs.201600004
    [12] Zhu T, Liu Y, Fu C, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater, 2017, 29(14): 1605884 doi: 10.1002/adma.201605884
    [13] Hu L, Wu H, Zhu T, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type Bismuth-Telluride-based solid solutions. Adv Energy Mater, 2015, 5(17): 1500411 doi: 10.1002/aenm.201500411
    [14] Hu L P, Zhu T J, Wang Y G, et al. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater, 2014, 6(2): e88 doi: 10.1038/am.2013.86
    [15] Zhai R, Hu L, Wu H, et al. Enhancing thermoelectric performance of n-type hot deformed bismuth-telluride-based solid solutions by nonstoichiometry-mediated intrinsic point defects. ACS Appl Mater Interfaces, 2017, 9(34): 28577 doi: 10.1021/acsami.7b08537
    [16] Hu L, Zhu T, Liu X, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater, 2014, 24(33): 5211 doi: 10.1002/adfm.201400474
    [17] Xu Z J, Hu L P, Ying P J, et al. Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation. Acta Mater, 2015, 84: 385 doi: 10.1016/j.actamat.2014.10.062
    [18] Zhu B, Huang Z Y, Wang X Y, et al. Attaining ultrahigh thermoelectric performance of direction-solidified bulk n-type Bi2Te24Se0.6 via its liquid state treatment. Nano Energy, 2017, 42: 8
    [19] Jiang J, Chen L, Bai S, et al. Fabrication and thermoelectric performance of textured n-type Bi2(Te, Se)3 by spark plasma sintering. Mater Sci Eng B, 2005, 117(3): 334 doi: 10.1016/j.mseb.2005.01.002
    [20] Mun H, Choi S M, Lee K H, et al. Boundary engineering for the thermoelectric performance of bulk alloys based on bismuth telluride. ChemSusChem, 2015, 8(14): 2312 doi: 10.1002/cssc.201403485
    [21] Pei Y, Lalonde A, Iwanaga S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci, 2011, 4(6): 2085 doi: 10.1039/c0ee00456a
    [22] Chen Z, Zhang X, Pei Y. Manipulation of phonon transport in thermoelectrics. Adv Mater, 2018, 30(17): 1705617 doi: 10.1002/adma.201705617
    [23] Lostak P, Novotny R, Kroutil J, et al. Optical properties of Sb2‒xInxTe3 single crystals. Phys Status Solidi A, 1987, 104(2): 841 doi: 10.1002/pssa.2211040238
    [24] Chen Z, Jian Z, Li W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater, 2017, 29(23): 1606768 doi: 10.1002/adma.201606768
    [25] Tan G, Stoumpos C C, Wang S, et al. Subtle roles of Sb and S in regulating the thermoelectric properties of N-type PbTe to high performance. Adv Energy Mater, 2017, 7(18): 1700099 doi: 10.1002/aenm.201700099
    [26] Biswas K, He J, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416): 414 doi: 10.1038/nature11439
    [27] Lotgering F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. J Inorg Nucl Chem, 1959, 9(2): 113 doi: 10.1016/0022-1902(59)80070-1
    [28] Ioffe A F. Semiconductor Thermoelements and Thermoelectric Cooling. London: Infosearch Limited, 1957
    [29] Wang X Y, Wang H J, Xiang B, et al. Thermoelectric performance of Sb2Te3-based alloys is improved by introducing PN junctions. ACS Appl Mater Interfaces, 2018, 10(27): 23277 doi: 10.1021/acsami.8b01719
    [30] Wang S, Sun Y, Yang J, et al. High thermoelectric performance in Te-free (Bi, Sb)2Se3 via structural transition induced band convergence and chemical bond softening. Energy Environ Sci, 2016, 9(11): 3436 doi: 10.1039/C6EE02674E
    [31] Hong M, Chen Z G, Yang L, et al. Enhancing the thermoelectric performance of SnSe1−xTex nanoplates through band engineering. J Mater Chem A, 2017, 5(21): 10713 doi: 10.1039/C7TA02677C
    [32] Paul B, V A K, Banerji P. Embedded Ag-rich nanodots in PbTe: Enhancement of thermoelectric properties through energy filtering of the carriers. J Appl Phys, 2010, 108(6): 064322 doi: 10.1063/1.3488621
    [33] Zhang C, De La Mata M, Li Z, et al. Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering. Nano Energy, 2016, 30: 630 doi: 10.1016/j.nanoen.2016.10.056
    [34] Zhang Q, Ai X, Wang L, et al. Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv Funct Mater, 2015, 25(6): 966 doi: 10.1002/adfm.201402663
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  191
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-15
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回