Effect of milling time on the particle size distribution and morphology of tungsten powders
-
摘要: 通过改变球磨时间,获得不同粒度分布的钨粉颗粒,分析球磨时间对钨粉粒度分布和形貌特征的影响,提高粒度分布在目标区间(5~11 μm)的钨粉颗粒体积分数。结果表明,球磨的前2 h对原料中大颗粒钨粉的影响较大,钨粉颗粒最大粒径由134 μm迅速下降到20 μm左右。随着球磨时间的增加,钨粉粒度分布指标减缓下降,除粒径变小外,颗粒形貌基本无变化,但是在球磨10 h后开始出现团聚现象。综合分析可知,球磨时间的改变对钨粉粒度分布指标影响较大,球磨时间为8 h时,可获得粒度分布最窄的钨粉颗粒,在目标区间的钨粉颗粒体积分数达到75%。Abstract: The tungsten particles in the different particle size distribution were obtained by changing the ball milling time to increase the volume fraction of tungsten particles in the objective particle size distribution of 5~11 μm, and the influence of ball milling time on the particle size distribution and morphology of tungsten powders was analyzed. The results show that, the tungsten particle size decreases significantly in the initial ball milling for 2 h, and the maximum particle size decreases rapidly from 134 μm to about 20 μm. With the further increase of milling time, the typical particle size distribution parameters of tungsten powders decrease slowly. The morphology of tungsten powders does not change except the decrease of particle size. The agglomeration phenomenon appears after milling for 10 h. Comprehensive analysis shows that, the change of ball milling time has a great influence on the particle size distribution of tungsten powders. When the ball milling time is 8 h, the narrowest particle size distribution of tungsten powders is obtained, and the volume fraction of the tungsten particles in the objective particle size distribution reaches 75%.
-
Keywords:
- milling time /
- tungsten powder /
- particle size distribution /
- morphology
-
-
表 1 钨粉原料粒度
Table 1 Particle size of the raw tungsten powders
μm D10 D50 D90 Dδ Dmin Dmax 5.96 11.84 22.36 1.39 2.21 133.75 注:Dδ为粒度分布宽度[15],Dδ=(D90−D10)/D50。 表 2 球磨实验参数
Table 2 Experimental parameters of the ball milling
球、料、水质量比 转速 / (r·min−1) 时间 / h 6.0:5.0:2.4 300 2、4、6、8、10、12 表 3 经不同时间球磨制备的钨粉在目标区间(5~11 μm)的体积分数
Table 3 Volume fraction of the tungsten particles prepared by ball milling for the different milling time in the objective particle size distribution (5~11 μm)
球磨时间 / h 体积分数 / % 0 44.3 2 62.3 4 65.5 6 70.9 8 74.8 10 74.3 12 73.1 表 4 球磨0~2 h粒度分布指标变化率
Table 4 Changing rate of particle size distribution index milled for 0~2 h
(μm·h−1) D10 D50 D90 0.29 1.06 3.78 表 5 球磨10~12 h粒度分布指标变化率
Table 5 Changing rate of particle size distribution index milled for 10~12 h
(μm·h−1) D10 D50 D90 0.39 0.52 0.67 表 6 球磨时间对钨粉颗粒比表面积的影响
Table 6 Effect of the ball milling time on the specific surface area of the tungsten powders
时间 / h 比表面积 / (cm2·g−1) 磨后比表面积:未磨比表面积 0 563.1 1.00 2 685.4 1.22 4 718.9 1.28 6 758.0 1.35 8 827.7 1.47 10 809.0 1.44 12 913.7 1.62 -
[1] 王岗. 超细钨粉及碳化钨粉制备工艺研究[学位论文]. 上海: 上海交通大学, 2009 Wang G. Research on Preparation of Ultrafine Tungsten Powder and Tungsten Carbide Powder [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2009
[2] 谢康德. 难熔金属钨、钼管材的应用及其制备技术研究进展. 硬质合金, 2018, 35(3): 219 Xie K D. Research progress in application and preparation technology of refractory metal tungsten and molybdenum tubes. Cement Carb, 2018, 35(3): 219
[3] 陈铮. 稀土氧化物掺杂纳米钨粉的制备及其性能研究[学位论文]. 北京: 北京科技大学, 2019 Chen Z. Research on Preparation of Rare Earth Oxide Doped Tungsten Nanopowders and Their Properties [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
[4] 王军. 高性能钨合金制备技术研究现状. 有色金属材料与工程, 2019, 40(4): 53 Wang J. Research status on preparation techniques of high-performance tungsten alloys. Nonferrous Met Mater Eng, 2019, 40(4): 53
[5] 刘辉明, 范景莲, 田家敏, 等. 超细钨粉的研究与应用. 中国钨业, 2009, 24(1): 29 DOI: 10.3969/j.issn.1009-0622.2009.01.008 Liu H M, Fan J L, Tian J M, et al. The preparation process and application of superfine tungsten powder. China Tungsten Ind, 2009, 24(1): 29 DOI: 10.3969/j.issn.1009-0622.2009.01.008
[6] 刘铭哲, 李斌川, 韩庆, 等. 超细碳化钨粉末制备工艺研究进展. 稀有金属与硬质合金, 2019, 47(2): 74 Liu M Z, Li B C, Han Q, et al. Development of preparation process of ultrafine tungsten carbide powder. Rare Met Cement Carb, 2019, 47(2): 74
[7] 彭琳茜. 一种穿爆燃弹用钨合金材料的制备研究[学位论文]. 沈阳: 沈阳理工大学, 2018 Peng L X. Preparation of Tungsten Alloy for Projectile of Armour-Piercing Explosive Incendiary [Dissertation]. Shenyang: Shenyang Ligong University, 2018
[8] 张保红, 王玲, 唐亮亮. SrCO3添加量对钨合金电极材料组织和性能的影响. 粉末冶金技术, 2018, 36(1): 48 Zhang B H, Wang L, Tang L L. Effect of SrCO3 content by mass on the microstructure and properties of tungsten alloy electrode materials. Powder Metall Technol, 2018, 36(1): 48
[9] 李睿. 钨粉颗粒粒度形貌优化及其近终成形[学位论文]. 北京: 北京科技大学, 2018 Li R. Optimization of Particle Size and Morphology of Tungsten Powder and Near Net Shaping of Tungsten Parts [Dissertation]. Beijing: University of Science and Technology Beijing, 2018
[10] 黄冬梅, 王信群, 杨剑. 球磨时间对BC干粉灭火剂形态特征的影响. 中国粉体技术, 2014, 20(1): 1 DOI: 10.3969/j.issn.1008-5548.2014.01.001 Huang D M, Wang X Q, Yang J. Influence of milling time on morphologic characters of BC dry powder extinguish agents. China Powder Sci Technol, 2014, 20(1): 1 DOI: 10.3969/j.issn.1008-5548.2014.01.001
[11] 张晓烨, 钟翔, 陈学刚, 等. 搅拌球磨磨制片状银粉工艺研究. 粉末冶金技术, 2019, 37(2): 134 Zhang X Y, Zhong X, Chen X G, et al. Research on the process of grinding flake silver powder by ball-stirring mill. Powder Metall Technol, 2019, 37(2): 134
[12] 叶原丰, 梁栋. 球磨时间对锰方硼石显微结构和发光特性的影响. 粉末冶金技术, 2019, 37(6): 451 Ye Y F, Liang D. Effect of milling time on microstructure and luminescent properties of chambersite. Powder Metall Technol, 2019, 37(6): 451
[13] 梁加淼, 王利民, 何卫, 等. 球磨时间对纳米晶Al–7Si–0. 3Mg合金粉末微观组织及硬度的影响. 粉末冶金技术, 2019, 37(5): 373 Liang J M, Wang L M, He W, et al. Effect of milling time on microstructures and hardness of nanocrystalline Al–7Si–0. 3Mg alloy powders. Powder Metall Technol, 2019, 37(5): 373
[14] 张桂银, 查五生, 陈秀丽, 等. 机械球磨技术在材料制备中的应用. 粉末冶金技术, 2018, 36(4): 315 Zhang G Y, Zha W S, Chen X L, et al. Application of mechanical ball-milling technology in material preparation. Powder Metall Technol, 2018, 36(4): 315
[15] Chen J, Wang F, Qian Y J. Effect of ball milling parameters on the particle size distribution of magnetic materials. Mod Min, 2015, 31(11): 107