热挤压和旋锻粉末冶金纯钛的组织和力学性能

刘小敏 高洪亮 杨景然 付正容 李幸福 李聪 杨易 刘欢 朱心昆

刘小敏, 高洪亮, 杨景然, 付正容, 李幸福, 李聪, 杨易, 刘欢, 朱心昆. 热挤压和旋锻粉末冶金纯钛的组织和力学性能[J]. 粉末冶金技术, 2022, 40(3): 239-244. doi: 10.19591/j.cnki.cn11-1974/tf.2020050015
引用本文: 刘小敏, 高洪亮, 杨景然, 付正容, 李幸福, 李聪, 杨易, 刘欢, 朱心昆. 热挤压和旋锻粉末冶金纯钛的组织和力学性能[J]. 粉末冶金技术, 2022, 40(3): 239-244. doi: 10.19591/j.cnki.cn11-1974/tf.2020050015
LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. doi: 10.19591/j.cnki.cn11-1974/tf.2020050015
Citation: LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. doi: 10.19591/j.cnki.cn11-1974/tf.2020050015

热挤压和旋锻粉末冶金纯钛的组织和力学性能

doi: 10.19591/j.cnki.cn11-1974/tf.2020050015
详细信息
    通讯作者:

    E-mail: xk_zhu@hotmail.com

  • 中图分类号: TG142.71

Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin

More Information
  • 摘要: 采用粉末冶金技术结合热挤压和旋锻工艺制备纯钛棒,利用万能试验机、维氏显微硬度仪、金相显微镜、高精度多功能密度计等设备测试纯钛棒的屈服强度、维氏硬度、显微组织和相对密度,研究了纯钛棒的制备工艺及其微观组织结构对材料力学性能的影响。研究表明,利用粉末冶金技术结合热挤压和旋锻工艺制备的纯钛棒屈服强度是880 MPa,均匀延伸率是4.06%,在拉伸变形过程中发生韧性断裂。纯钛棒显微组织为等轴状的细晶粒组织,平均晶粒尺寸约1 μm,组织分布均匀,无明显裂纹和缺陷,有较高的相对密度。
  • 图  1  粉末冶金加热挤压及旋转锻造实验工艺流程

    Figure  1.  Experimental process of the powder metallurgy combined with the hot extrusion and the rotary swagin

    图  2  低温轧制实验工艺流程

    Figure  2.  Experimental process of the low temperature rolling

    图  3  万能试验机设备和拉伸试样示意图

    Figure  3.  Schematic diagram of the universal testing machine and the titanium tensile specimens

    图  4  钛材应力–应变曲线

    Figure  4.  Stress-strain curves of the titanium specimens

    图  5  粉末冶金钛棒硬度与距表面深度变化关系

    Figure  5.  Relationship between the hardness and the depth from surface of the titanium rods prepared by powder metallurgy

    图  6  粉末冶金钛棒金相组织(a)及放大图(b)

    Figure  6.  Microstructure of the titanium rods prepared by powder metallurgy (a) and the magnified view (b)

    图  7  粉末冶金钛棒断口形貌图:(a)断口整体形貌;(b)A区域形貌;(c)B区形貌;(d)C区域形貌

    Figure  7.  Fracture morphology of the titanium rods prepared by powder metallurgy: (a) overall fracture morphology; (b) magnified view of area A; (c) magnified view of area B; (d) magnified view of area C

    表  1  钛材拉伸数据

    Table  1.   Tensile data of the titanium specimens

    样品名称屈服强度 / MPa均匀延伸率 / %抗拉强度 / MPa
    Ti–退火19310.20269
    Ti–低温轧制6594.35784
    Ti–粉末冶金8804.061021
    下载: 导出CSV
  • [1] Putyrskii S V, Yakovlev A L, Nochovnaya N A. Benefits and applications of high-strength titanium alloys. Russ Eng Res, 2018, 38(12): 945 doi: 10.3103/S1068798X18120419
    [2] Dehghan-Manshadi A, Bermingham M J, Dargusch M S, et al. Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technol, 2017, 319: 289 doi: 10.1016/j.powtec.2017.06.053
    [3] Lü L Q, Xi J H, Wang W, et al. Development status and prospect on application of titanium alloy in ocean engineering. Metall Eng, 2015(2): 89

    吕利强, 席锦会, 王伟, 等. 我国海洋工程用钛合金发展现状及展望. 冶金工程, 2015(2): 89
    [4] Zhang M J, Nan H, Jü Z Q, et al. Aeronautical cast Ti alloy and forming technology development. J Aeronaut Mater, 2016, 36(3): 13

    张美娟, 南海, 鞠忠强, 等. 航空铸造钛合金及其成型技术发展. 航空材料学报, 2016, 36(3): 13
    [5] Tang H P, Liu Y, Wei W F, et al. Effects of rare earth element on microstructure and mechanical properties of powder metallurgy Ti alloy. Chin J Nonferrous Met, 2004, 14(2): 244

    汤慧萍, 刘咏, 韦伟峰, 等. 添加稀土元素对粉末冶金Ti合金显微组织和力学性能的影响. 中国有色金属学报, 2004, 14(2): 244
    [6] Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225

    武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术, 2019, 37(3): 225
    [7] Liu C, Kong X J, Wu S W, et al. Research on powder injection molding of Ti6Al4V alloys for biomedical application. Powder Metall Technol, 2018, 36(3): 217

    刘超, 孔祥吉, 吴胜文, 等. 生物医用Ti6Al4V合金粉末注射成形工艺研究. 粉末冶金技术, 2018, 36(3): 217
    [8] Hanson A D, Runkle J C, Widmer R, et al. Titanium near net shapes from elemental powder blends. Int J Powder Metall, 1990, 26(2): 157
    [9] Robertson I M, Schaffer G B. Design of titanium alloy for efficient sintering to low porosity. Powder Metall, 2009, 52(4): 311 doi: 10.1179/003258909X12502872942499
    [10] Yan L P, Yuan G S, Ding H. Effect of 6061Al matrix particle size on microstructure and properties of SiCp/6061Al composites. Powder Metall Ind, 2017, 27(2): 20

    兖利鹏, 原国森, 丁海. 6061Al基体粒径对SiCp/6061Al基复合材料组织和性能的影响. 粉末冶金工业, 2017, 27(2): 20
    [11] Zhou C, Li L, Zhang R, et al. Application of rotary forging technology in light weight of automobile drive shaft. Hot Working Technol, 2018, 47(5): 143

    周成, 李理, 张蓉, 等. 旋锻工艺在汽车传动轴轻量化上的应用. 热加工工艺, 2018, 47(5): 143
    [12] Wang M S, Wang Y F, Huang A H, et al. Promising tensile and fatigue properties of commercially pure titanium processed by rotary swaging and annealing treatment. Materials, 2018, 11(11): 2261 doi: 10.3390/ma11112261
    [13] Stolyarov V V, Zeipper L, Mingler B, et al. Influence of post-deformation on CP–Ti processed by equal channel angular pressing. Mater Sci Engin A, 2008, 476(1): 98
    [14] Song X J, Yang X R, Liu X Y, et al. The thermal stability of commercially pure Ti processed by 135° ECAP and swaging. J Mater Eng, 2017, 45(6): 49

    宋小杰, 杨西荣, 刘晓燕, 等. 135°ECAP+旋锻变形工业纯钛的热稳定性研究. 材料工程, 2017, 45(6): 49
    [15] He Y M, Wang Y H, Guo K, et al. Effect of carbide precipitation on strain-hardening behavior and deformation mechanism of metastable austenitic stainless steel after repetitive cold rolling and reversion annealing. Mater Sci Eng, 2017, 708(21): 248
    [16] Sun F J, Qu S G, Deng Z H, et al. Surface morphology and roughness of Ti–6Al–4V powder metallurgy workpieces with different relative densities. Ordn Mater Sci Eng, 2017, 40(5): 1

    孙富建, 屈盛官, 邓朝晖, 等. 不同致密度 Ti–6Al–4V 粉末冶金工件的表面形貌及粗糙度. 兵器材料科学与工程, 2017, 40(5): 1
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  757
  • HTML全文浏览量:  134
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-27
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回