Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin
-
摘要: 采用粉末冶金技术结合热挤压和旋锻工艺制备纯钛棒,利用万能试验机、维氏显微硬度仪、金相显微镜、高精度多功能密度计等设备测试纯钛棒的屈服强度、维氏硬度、显微组织和相对密度,研究了纯钛棒的制备工艺及其微观组织结构对材料力学性能的影响。研究表明,利用粉末冶金技术结合热挤压和旋锻工艺制备的纯钛棒屈服强度是880 MPa,均匀延伸率是4.06%,在拉伸变形过程中发生韧性断裂。纯钛棒显微组织为等轴状的细晶粒组织,平均晶粒尺寸约1 μm,组织分布均匀,无明显裂纹和缺陷,有较高的相对密度。Abstract: Pure titanium rods were prepared by the powder metallurgy technology combined with the hot extrusion and the rotary swaging. The yield strength, Vickers hardness, microstructure, and relative density of the pure titanium rods were tested by the universal testing machine, Vickers microhardness tester, metallographic microscope, and high-precision multifunctional densitometer. The effects of preparation technology and microstructure on the mechanical properties of the pure titanium rods were studied. The results show that, the yield strength of pure titanium rods prepared by the powder metallurgy combined with the hot extrusion and rotary forging is 880 MPa, the uniform elongation is 4.06%, and the ductile fracture occurs during the tensile deformation. The microstructure of pure titanium rods is equiaxed fine grain structure, the average grain size is about 1 μm, the structure distribution is uniform, showing no obvious cracks and defects and high relative density.
-
Keywords:
- pure titanium /
- hot extrusion /
- rotary swaging /
- mechanical properties
-
-
表 1 钛材拉伸数据
Table 1 Tensile data of the titanium specimens
样品名称 屈服强度 / MPa 均匀延伸率 / % 抗拉强度 / MPa Ti–退火 193 10.20 269 Ti–低温轧制 659 4.35 784 Ti–粉末冶金 880 4.06 1021 -
[1] Putyrskii S V, Yakovlev A L, Nochovnaya N A. Benefits and applications of high-strength titanium alloys. Russ Eng Res, 2018, 38(12): 945 DOI: 10.3103/S1068798X18120419
[2] Dehghan-Manshadi A, Bermingham M J, Dargusch M S, et al. Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technol, 2017, 319: 289 DOI: 10.1016/j.powtec.2017.06.053
[3] 吕利强, 席锦会, 王伟, 等. 我国海洋工程用钛合金发展现状及展望. 冶金工程, 2015(2): 89 Lü L Q, Xi J H, Wang W, et al. Development status and prospect on application of titanium alloy in ocean engineering. Metall Eng, 2015(2): 89
[4] 张美娟, 南海, 鞠忠强, 等. 航空铸造钛合金及其成型技术发展. 航空材料学报, 2016, 36(3): 13 Zhang M J, Nan H, Jü Z Q, et al. Aeronautical cast Ti alloy and forming technology development. J Aeronaut Mater, 2016, 36(3): 13
[5] 汤慧萍, 刘咏, 韦伟峰, 等. 添加稀土元素对粉末冶金Ti合金显微组织和力学性能的影响. 中国有色金属学报, 2004, 14(2): 244 Tang H P, Liu Y, Wei W F, et al. Effects of rare earth element on microstructure and mechanical properties of powder metallurgy Ti alloy. Chin J Nonferrous Met, 2004, 14(2): 244
[6] 武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术, 2019, 37(3): 225 Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225
[7] 刘超, 孔祥吉, 吴胜文, 等. 生物医用Ti6Al4V合金粉末注射成形工艺研究. 粉末冶金技术, 2018, 36(3): 217 Liu C, Kong X J, Wu S W, et al. Research on powder injection molding of Ti6Al4V alloys for biomedical application. Powder Metall Technol, 2018, 36(3): 217
[8] Hanson A D, Runkle J C, Widmer R, et al. Titanium near net shapes from elemental powder blends. Int J Powder Metall, 1990, 26(2): 157
[9] Robertson I M, Schaffer G B. Design of titanium alloy for efficient sintering to low porosity. Powder Metall, 2009, 52(4): 311 DOI: 10.1179/003258909X12502872942499
[10] 兖利鹏, 原国森, 丁海. 6061Al基体粒径对SiCp/6061Al基复合材料组织和性能的影响. 粉末冶金工业, 2017, 27(2): 20 Yan L P, Yuan G S, Ding H. Effect of 6061Al matrix particle size on microstructure and properties of SiCp/6061Al composites. Powder Metall Ind, 2017, 27(2): 20
[11] 周成, 李理, 张蓉, 等. 旋锻工艺在汽车传动轴轻量化上的应用. 热加工工艺, 2018, 47(5): 143 Zhou C, Li L, Zhang R, et al. Application of rotary forging technology in light weight of automobile drive shaft. Hot Working Technol, 2018, 47(5): 143
[12] Wang M S, Wang Y F, Huang A H, et al. Promising tensile and fatigue properties of commercially pure titanium processed by rotary swaging and annealing treatment. Materials, 2018, 11(11): 2261 DOI: 10.3390/ma11112261
[13] Stolyarov V V, Zeipper L, Mingler B, et al. Influence of post-deformation on CP–Ti processed by equal channel angular pressing. Mater Sci Engin A, 2008, 476(1): 98
[14] 宋小杰, 杨西荣, 刘晓燕, 等. 135°ECAP+旋锻变形工业纯钛的热稳定性研究. 材料工程, 2017, 45(6): 49 Song X J, Yang X R, Liu X Y, et al. The thermal stability of commercially pure Ti processed by 135° ECAP and swaging. J Mater Eng, 2017, 45(6): 49
[15] He Y M, Wang Y H, Guo K, et al. Effect of carbide precipitation on strain-hardening behavior and deformation mechanism of metastable austenitic stainless steel after repetitive cold rolling and reversion annealing. Mater Sci Eng, 2017, 708(21): 248
[16] 孙富建, 屈盛官, 邓朝晖, 等. 不同致密度 Ti–6Al–4V 粉末冶金工件的表面形貌及粗糙度. 兵器材料科学与工程, 2017, 40(5): 1 Sun F J, Qu S G, Deng Z H, et al. Surface morphology and roughness of Ti–6Al–4V powder metallurgy workpieces with different relative densities. Ordn Mater Sci Eng, 2017, 40(5): 1