高级检索

热挤压和旋锻粉末冶金纯钛的组织和力学性能

刘小敏, 高洪亮, 杨景然, 付正容, 李幸福, 李聪, 杨易, 刘欢, 朱心昆

刘小敏, 高洪亮, 杨景然, 付正容, 李幸福, 李聪, 杨易, 刘欢, 朱心昆. 热挤压和旋锻粉末冶金纯钛的组织和力学性能[J]. 粉末冶金技术, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015
引用本文: 刘小敏, 高洪亮, 杨景然, 付正容, 李幸福, 李聪, 杨易, 刘欢, 朱心昆. 热挤压和旋锻粉末冶金纯钛的组织和力学性能[J]. 粉末冶金技术, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015
LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015
Citation: LIU Xiao-min, GAO Hong-liang, YANG Jing-ran, FU Zheng-rong, LI Xing-fu, LI Cong, YANG Yi, LIU Huan, ZHU Xin-kun. Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin[J]. Powder Metallurgy Technology, 2022, 40(3): 239-244. DOI: 10.19591/j.cnki.cn11-1974/tf.2020050015

热挤压和旋锻粉末冶金纯钛的组织和力学性能

详细信息
    通讯作者:

    朱心昆: E-mail: xk_zhu@hotmail.com

  • 中图分类号: TG142.71

Microstructure and mechanical properties of pure titanium prepared by powder metallurgy combined with hot extrusion and rotary swagin

More Information
  • 摘要: 采用粉末冶金技术结合热挤压和旋锻工艺制备纯钛棒,利用万能试验机、维氏显微硬度仪、金相显微镜、高精度多功能密度计等设备测试纯钛棒的屈服强度、维氏硬度、显微组织和相对密度,研究了纯钛棒的制备工艺及其微观组织结构对材料力学性能的影响。研究表明,利用粉末冶金技术结合热挤压和旋锻工艺制备的纯钛棒屈服强度是880 MPa,均匀延伸率是4.06%,在拉伸变形过程中发生韧性断裂。纯钛棒显微组织为等轴状的细晶粒组织,平均晶粒尺寸约1 μm,组织分布均匀,无明显裂纹和缺陷,有较高的相对密度。
    Abstract: Pure titanium rods were prepared by the powder metallurgy technology combined with the hot extrusion and the rotary swaging. The yield strength, Vickers hardness, microstructure, and relative density of the pure titanium rods were tested by the universal testing machine, Vickers microhardness tester, metallographic microscope, and high-precision multifunctional densitometer. The effects of preparation technology and microstructure on the mechanical properties of the pure titanium rods were studied. The results show that, the yield strength of pure titanium rods prepared by the powder metallurgy combined with the hot extrusion and rotary forging is 880 MPa, the uniform elongation is 4.06%, and the ductile fracture occurs during the tensile deformation. The microstructure of pure titanium rods is equiaxed fine grain structure, the average grain size is about 1 μm, the structure distribution is uniform, showing no obvious cracks and defects and high relative density.
  • 图  1   粉末冶金加热挤压及旋转锻造实验工艺流程

    Figure  1.   Experimental process of the powder metallurgy combined with the hot extrusion and the rotary swagin

    图  2   低温轧制实验工艺流程

    Figure  2.   Experimental process of the low temperature rolling

    图  3   万能试验机设备和拉伸试样示意图

    Figure  3.   Schematic diagram of the universal testing machine and the titanium tensile specimens

    图  4   钛材应力–应变曲线

    Figure  4.   Stress-strain curves of the titanium specimens

    图  5   粉末冶金钛棒硬度与距表面深度变化关系

    Figure  5.   Relationship between the hardness and the depth from surface of the titanium rods prepared by powder metallurgy

    图  6   粉末冶金钛棒金相组织(a)及放大图(b)

    Figure  6.   Microstructure of the titanium rods prepared by powder metallurgy (a) and the magnified view (b)

    图  7   粉末冶金钛棒断口形貌图:(a)断口整体形貌;(b)A区域形貌;(c)B区形貌;(d)C区域形貌

    Figure  7.   Fracture morphology of the titanium rods prepared by powder metallurgy: (a) overall fracture morphology; (b) magnified view of area A; (c) magnified view of area B; (d) magnified view of area C

    表  1   钛材拉伸数据

    Table  1   Tensile data of the titanium specimens

    样品名称屈服强度 / MPa均匀延伸率 / %抗拉强度 / MPa
    Ti–退火19310.20269
    Ti–低温轧制6594.35784
    Ti–粉末冶金8804.061021
    下载: 导出CSV
  • [1]

    Putyrskii S V, Yakovlev A L, Nochovnaya N A. Benefits and applications of high-strength titanium alloys. Russ Eng Res, 2018, 38(12): 945 DOI: 10.3103/S1068798X18120419

    [2]

    Dehghan-Manshadi A, Bermingham M J, Dargusch M S, et al. Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technol, 2017, 319: 289 DOI: 10.1016/j.powtec.2017.06.053

    [3] 吕利强, 席锦会, 王伟, 等. 我国海洋工程用钛合金发展现状及展望. 冶金工程, 2015(2): 89

    Lü L Q, Xi J H, Wang W, et al. Development status and prospect on application of titanium alloy in ocean engineering. Metall Eng, 2015(2): 89

    [4] 张美娟, 南海, 鞠忠强, 等. 航空铸造钛合金及其成型技术发展. 航空材料学报, 2016, 36(3): 13

    Zhang M J, Nan H, Jü Z Q, et al. Aeronautical cast Ti alloy and forming technology development. J Aeronaut Mater, 2016, 36(3): 13

    [5] 汤慧萍, 刘咏, 韦伟峰, 等. 添加稀土元素对粉末冶金Ti合金显微组织和力学性能的影响. 中国有色金属学报, 2004, 14(2): 244

    Tang H P, Liu Y, Wei W F, et al. Effects of rare earth element on microstructure and mechanical properties of powder metallurgy Ti alloy. Chin J Nonferrous Met, 2004, 14(2): 244

    [6] 武秋池, 纪箴, 贾成厂, 等. 钛及钛合金人体植入材料研究进展. 粉末冶金技术, 2019, 37(3): 225

    Wu Q C, Ji Z, Jia C C, et al. Research progress on titanium and titanium alloys used as implant materials for human body. Powder Metall Technol, 2019, 37(3): 225

    [7] 刘超, 孔祥吉, 吴胜文, 等. 生物医用Ti6Al4V合金粉末注射成形工艺研究. 粉末冶金技术, 2018, 36(3): 217

    Liu C, Kong X J, Wu S W, et al. Research on powder injection molding of Ti6Al4V alloys for biomedical application. Powder Metall Technol, 2018, 36(3): 217

    [8]

    Hanson A D, Runkle J C, Widmer R, et al. Titanium near net shapes from elemental powder blends. Int J Powder Metall, 1990, 26(2): 157

    [9]

    Robertson I M, Schaffer G B. Design of titanium alloy for efficient sintering to low porosity. Powder Metall, 2009, 52(4): 311 DOI: 10.1179/003258909X12502872942499

    [10] 兖利鹏, 原国森, 丁海. 6061Al基体粒径对SiCp/6061Al基复合材料组织和性能的影响. 粉末冶金工业, 2017, 27(2): 20

    Yan L P, Yuan G S, Ding H. Effect of 6061Al matrix particle size on microstructure and properties of SiCp/6061Al composites. Powder Metall Ind, 2017, 27(2): 20

    [11] 周成, 李理, 张蓉, 等. 旋锻工艺在汽车传动轴轻量化上的应用. 热加工工艺, 2018, 47(5): 143

    Zhou C, Li L, Zhang R, et al. Application of rotary forging technology in light weight of automobile drive shaft. Hot Working Technol, 2018, 47(5): 143

    [12]

    Wang M S, Wang Y F, Huang A H, et al. Promising tensile and fatigue properties of commercially pure titanium processed by rotary swaging and annealing treatment. Materials, 2018, 11(11): 2261 DOI: 10.3390/ma11112261

    [13]

    Stolyarov V V, Zeipper L, Mingler B, et al. Influence of post-deformation on CP–Ti processed by equal channel angular pressing. Mater Sci Engin A, 2008, 476(1): 98

    [14] 宋小杰, 杨西荣, 刘晓燕, 等. 135°ECAP+旋锻变形工业纯钛的热稳定性研究. 材料工程, 2017, 45(6): 49

    Song X J, Yang X R, Liu X Y, et al. The thermal stability of commercially pure Ti processed by 135° ECAP and swaging. J Mater Eng, 2017, 45(6): 49

    [15]

    He Y M, Wang Y H, Guo K, et al. Effect of carbide precipitation on strain-hardening behavior and deformation mechanism of metastable austenitic stainless steel after repetitive cold rolling and reversion annealing. Mater Sci Eng, 2017, 708(21): 248

    [16] 孙富建, 屈盛官, 邓朝晖, 等. 不同致密度 Ti–6Al–4V 粉末冶金工件的表面形貌及粗糙度. 兵器材料科学与工程, 2017, 40(5): 1

    Sun F J, Qu S G, Deng Z H, et al. Surface morphology and roughness of Ti–6Al–4V powder metallurgy workpieces with different relative densities. Ordn Mater Sci Eng, 2017, 40(5): 1

图(7)  /  表(1)
计量
  • 文章访问数:  863
  • HTML全文浏览量:  155
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-26
  • 录用日期:  2020-05-26
  • 网络出版日期:  2022-01-24
  • 刊出日期:  2022-06-27

目录

    /

    返回文章
    返回