高级检索

不同粘结相WC基硬质合金微观结构与性能

杨方, 高阳, 度鹏, 陈雷明, 程俊伟

杨方, 高阳, 度鹏, 陈雷明, 程俊伟. 不同粘结相WC基硬质合金微观结构与性能[J]. 粉末冶金技术, 2023, 41(2): 187-192. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060003
引用本文: 杨方, 高阳, 度鹏, 陈雷明, 程俊伟. 不同粘结相WC基硬质合金微观结构与性能[J]. 粉末冶金技术, 2023, 41(2): 187-192. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060003
YANG Fang, GAO Yang, DU Peng, CHEN Leiming, CHENG Junwei. Microstructure and mechanical properties of WC-based cemented carbides with different binder phases[J]. Powder Metallurgy Technology, 2023, 41(2): 187-192. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060003
Citation: YANG Fang, GAO Yang, DU Peng, CHEN Leiming, CHENG Junwei. Microstructure and mechanical properties of WC-based cemented carbides with different binder phases[J]. Powder Metallurgy Technology, 2023, 41(2): 187-192. DOI: 10.19591/j.cnki.cn11-1974/tf.2020060003

不同粘结相WC基硬质合金微观结构与性能

详细信息
    通讯作者:

    高阳: E-mail: gaoyang4435@163.com

  • 中图分类号: TF125.3

Microstructure and mechanical properties of WC-based cemented carbides with different binder phases

More Information
  • 摘要:

    以碳质量分数为理论含碳量的WC为硬质相,在1450 ℃下通过气压烧结制备WC‒20Fe,WC‒20Ni和WC‒20Co硬质合金,通过X射线衍射、扫描电子显微镜、电子探针和力学性能测试研究了不同金属粘结相对烧结硬质合金微观结构和力学性能的影响。结果表明:WC‒20Fe合金出现η脱碳相(Fe3W3C),W在粘结相Fe中的溶解度仅有1.915%(质量分数),WC晶粒尺寸最小。WC‒20Ni合金渗碳出现石墨相(C),W在粘结相Ni中的溶解度达到10.753%(质量分数),WC晶粒尺寸最大,合金硬度最小。WC‒20Co合金为正常两相区组织(WC+γ),具有最高抗弯强度2720 MPa和最大硬度934.41 kg∙mm‒2。所有合金断裂模式均为脆性断裂和沿晶断裂,WC‒20Co合金断口出现明显的粘结相撕裂。

    Abstract:

    The WC‒20Fe, WC‒20Ni, and WC‒20Co cemented carbides were prepared by gas pressure sintering at 1450 ℃ using the WC powders with the theoretical carbon content (mass fraction). The effects of metal binders on the microstructure and mechanical properties of the cemented carbides were investigated by X-ray diffractometer (XRD), scanning electron microscope (SEM), electron probe microanalysis (EPMA), and mechanical properties tester. The results show that, the brittle η-phase (Fe3W3C) appears in the WC‒20Fe alloys, and finer grains are observed due to the lower solubility of W (1.915% by mass) in Fe binder. However, the graphite phase (C) is detected in the WC‒20Co alloys, the solubility of W in Ni binder can reach to 10.753% by mass, resulting in the largest grain size and the lowest hardness. The WC‒20Co alloys show the two-phase region (WC+γ), which exhibit the highest bending strength and hardness of 2720 MPa and 934.41 kg∙mm‒2, respectively. The fracture mode of all the alloys can be described as the brittle fracture and intergranular fracture. Moreover, the fracture surface of the WC‒20Co alloys shows the obvious binder tearing character.

  • 粉末冶金摩擦材料是一种含有金属和非金属的多组元假合金。一般由基体组元、摩擦组元和润滑组元三部分组成[1-2]。与有机摩擦材料相比, 粉末冶金摩擦材料的力学强度高、抗冲击载荷强、摩擦系数稳定、热稳定性高、热传导性好、抗腐蚀能力强, 以及耐磨性能优良, 是现代刹车材料中应用较为广泛的材料之一[3-5]。目前已被应用于各种大型民用飞机、高性能军用飞机、火车、汽车、风电行业以及其它机械制动装置中[6-10]

    相对比于铁基粉末冶金摩擦材料高温下容易产生胶合、摩擦系数波动大、异常磨损明显、噪声大等情况, 铜基摩擦材料因其良好的导热性和自润湿性能, 在干、湿条件下均具备稳定的摩擦性能, 并在高速制动摩擦过程中, 基体与铜结构形成热扩散通道, 能够在相对短的时间内将大量摩擦热散发到环境中, 有效避免了热聚集引起胶粘对制动盘性能造成不利的影响[11]。长期以来, 对铜基粉末冶金摩擦材料的研究主要集中在配方研究和制备工艺对摩擦磨损性能的影响方面, 而刹车速度对铜基粉末冶金摩擦材料的摩擦磨损机理的研究相对较少。本文以铜基粉末冶金摩擦材料为研究对象, 探讨不同的刹车速度对铜基粉末冶金摩擦材料摩擦磨损性能的影响规律, 并对其微观组织进行研究表征, 为新型铜基粉末冶金摩擦材料的深入研究提供参考与理论支持。

    实验中所用的材料主要包括电解铜粉、还原铁粉、鳞片状天然石墨, SiO2粉和铬铁等。按表 1的配方分别称取各种粉料, 并在双锥形混合机中混合20~24 h, 将混合均匀的混合料制成压坯, 压坯尺寸为20 mm×15 mm, 厚度大于5 mm。将压坯置于钟罩式加压烧结炉内, 并在氢气保护气氛中进行加压烧结, 烧结温度为850~900℃, 烧结压力为0.3~0.5 MPa, 烧结时间为3.5~4 h。烧结完成后冷却至500℃后再随箱水冷至≤60℃, 出砂。

    表  1  铜基粉末冶金摩擦材料化学成分(质量分数)
    Table  1.  Chemical composition of the copper-based powder metallurgy brake materials  %
    Cu Sn Fe SiO2 铬铁 其它
    60~70 1~6 6~15 5~10 2~5 10~20
    下载: 导出CSV 
    | 显示表格

    采用JEOL公司的JSM-6390A型扫描电子显微镜(scanning electron microscope, SEM)对铜基粉末冶金摩擦材料实验前后的表面形貌进行观测; 采用HRF-150型洛氏硬度计和夏比冲击试验机分别对烧结后粉末层的硬度和冲击韧性进行表征; 在MM-3000型摩擦磨损性能试验台上进行摩擦磨损性能试验, 对偶盘材料为30CrMnSiA。试验前, 摩擦副表面先磨合至摩擦副贴合面积≥80%, 摩擦磨损试验条件及要求见表 2

    表  2  摩擦磨损试验条件
    Table  2.  Condition of friction and wear test
    编号 惯量/ (kg·m2) 刹车压力/ MPa 刹车速度/ (m·s-1) 刹车转速/ (r·min-1) 次数
    1# 0.225 0.66 27.78 2652 10
    2# 33.33 3183 10
    3# 38.89 3714 10
    4# 44.44 4244 10
    5# 50.00 4775 10
    6# 55.56 5305 10
    下载: 导出CSV 
    | 显示表格

    摩擦试验机记录摩擦吸收功率、刹车力矩与刹车时间关系。根据式(1)可计算出摩擦系数。

    $$ \mu = \frac{{2M}}{{\left( {{\gamma _1} + {\gamma _2}} \right) \cdot F}} $$ (1)

    式中:μ为摩擦系数, M为力矩(N·m), F为荷重(N), γ1为内圈半径(m), γ2为外圈半径(m)。用电子天平测量试样摩擦试验前后的质量变化; 用千分尺测量试样上6个不同位置处摩擦试验前后的厚度变化, 计算出摩擦试验前后试样厚度差, 求出平均值即试样的线性磨损量。

    图 1为烧结后铜基粉末冶金摩擦材料表面显微组织形貌。图中黑色的为鳞片石墨, 白色的为铜, 灰色的可能为铁、铬铁或SiO2颗粒。从图可以看出, 大量的鳞片石墨稳定地分布在铜基体当中, 从而保证了刹车过程的平稳性和摩擦系数的稳定性。从图 1 (b)可以清楚地看到大量的灰色颗粒, 其中近似球状的较大颗粒为铬铁(200目, 如箭头所示), 其与基体接触良好, 两者之间观测不到明显的界面[12]; 较小的球状物可能为铁、二氧化硅等颗粒(100目); 这些颗粒均匀地分布在铜基体当中, 铜基体包裹着鳞片状石墨分布在摩擦片表面, 具有稳定的摩擦系数。

    图  1  摩擦材料试样表面扫描电子显微形貌
    Figure  1.  SEM images of sample surface of friction material

    铜基粉末冶金摩擦材料的力学性能如表 3所示。从表中可以看出, 摩擦材料的密度较高, 说明摩擦材料中的非金属组元所占体积较小; 材料的洛氏硬度较低, 说明摩擦试验中的对偶磨损相对较小; 材料的抗冲击韧性较大, 表明摩擦组元在材料烧结过程中以机械镶嵌的方式存在基体材料中, 提高了摩擦材料的耐磨性。在高速刹车过程中, 摩擦材料的力学性能确保了其在较大冲击力和较大磨损量条件下的使用。

    表  3  摩擦材料的力学性能
    Table  3.  Mechanical properties of friction material
    密度/ (g·cm-3) 洛氏硬度,HB 冲击韧性/ (J·cm-2)
    ≥5.72 ≥27 ≥33.5
    下载: 导出CSV 
    | 显示表格

    图 2为试样在55.56 m/s刹车速度下的摩擦磨损曲线图。在此刹车速度下, 最大摩擦系数为0.5061, 平均摩擦系数为0.4521;经计算, 离均差率为11.94%, 较小的离均差率说明了铜基摩擦材料具有稳定的摩擦系数。从图中还可以看出, 摩擦系数曲线无明显的振颤现象, 力矩曲线也呈稳定增长趋势, 这也充分表明了该铜基粉末冶金摩擦材料的刹车制动效果平稳, 产生这种现象的原因可能是由于摩擦材料配方中摩擦组元铬铁和铜基体具有良好的润湿性能, 从而提高了摩擦系数的稳定性[12]

    图  2  铜基粉末冶金摩擦材料在55.56 m/s刹车速度下的摩擦数据曲线
    Figure  2.  Friction curves of Cu-based powder metallurgy material at the braking velocity of 55.56 m/s

    图 3 (a)是在不同刹车速度条件下摩擦磨损性能试验后试样的摩擦吸收功率和摩擦系数曲线图。摩擦吸收功率是指试样在单位时间单位面积内所吸收的功, 它与摩擦面的温度升高有着直接对应关系, 因此影响试样的摩擦系数。从图 3 (a)可以看出, 随着刹车速度增大, 刹车能量升高, 摩擦面的温度进一步升高, 试样的摩擦吸收功率呈近似线性升高。刹车速度从27.78 m/s增加到44.44 m/s, 试样的摩擦吸收功率速率增长最快; 当刹车速度从44.44 m/s增加到55.56 m/s, 试样的摩擦吸收功率增加相对缓慢, 这表明铜基粉末冶金摩擦材料在低速条件下, 吸收的动能可能主要被铜基摩擦材料中的孔隙吸收并传导到空气当中; 当制动速率超过44.4 m/s时, 摩擦材料的吸收动能会被铜基摩擦材料自身所吸收, 并通过高的导热性将吸收能量传导至空气中。从图中还可以看出, 当刹车速度从27.78 m/s增加到44.44 m/s时, 摩擦系数也相对从0.4040增加到0.5071。但随着刹车速率的提高, 试样的摩擦系数出现了明显下降的趋势, 这可能与摩擦材料的摩擦机理和微观结构有关。

    图  3  不同刹车速度下铜基粉末冶金摩擦材料的摩擦系数和摩擦吸收功率曲线(a)及线性磨损率和质量损失曲线(b)
    Figure  3.  Relationships of friction absorption power–friction coefficient (a) and linear wear rate–mass loss (b) with braking velocity of Cu-based powder metallurgy friction material

    图 3 (b)是在不同刹车速度条件下摩擦磨损性能试验后试样的线性磨损率和质量磨损。从图 3 (b)可以看出, 试样的线磨损率随刹车速度的变化与质量损失随刹车速度的变化一致, 都呈上升的趋势。当刹车速度从27.78 m/s增加到33.33 m/s, 试样的线磨损率和质量磨损均较大, 这是由于在较低的速度下, 刹车未进入平稳阶段, 出现了较为明显的磨粒磨损; 当刹车速度从33.33 m/s增加到50.00 m/s时, 粘着磨损起主要作用, 因此线性磨损率和质量磨损都相对较小; 当刹车速率增长至55.56 m/s时, 试样的质量磨损呈明显增长趋势, 这可能是由于在高速条件下, 铜基摩擦材料自身软化造成摩擦组元脱落, 从而质量损耗明显。但由于线性磨损率数据的获得是通过千分尺测量一定面积上的厚度损耗而计算得到的, 因此线性磨损率并不能完全反应出摩擦组元的脱落引起厚度的微小变化, 因而线性损耗率增长不明显。

    为进一步研究刹车速度对摩擦磨损性能的影响, 探讨摩擦磨损性能与摩擦面的关系, 采用扫描电子显微镜对在不同刹车速度下试样的摩擦面进行分析。图 4所示为不同刹车速度试验后铜基粉末冶金摩擦材料表面的扫描电子显微形貌。从图中可以看出, 当刹车速度为27.78 m/s和33.33 m/s时, 由于刹车速度较低, 摩擦剪切力较小, 因此摩擦表面温度较低, 且未能形成连续完整的氧化膜, 从而出现了较小面积的剥落且剥落的块状物较小, 其中剥落后较小的硬质颗粒在剪切力作用下从摩擦表面脱落, 在摩擦副之间形成磨粒, 在摩擦表面产生犁沟, 发生磨料磨损和剥层损耗, 其磨损主要是由机械啮合作用造成的; 当刹车速度为38.89 m/s和44.44 m/s时, 摩擦表面较为光滑, 无明显的脱落。这是由于随着刹车速度的增大, 摩擦吸收功率增大, 摩擦面的温度提高, 摩擦剪切力的作用也逐渐增强, 氧化膜趋于平滑连续, 摩擦表面与摩擦副的真实接触面积越大, 其机械啮合作用减弱, 粘着机理起主要作用。随着刹车速度的进一步增大, 摩擦表面在较大剪切力的作用下发生了较为严重的脱落。当刹车速度从50.00 m/s逐渐增大到55.56 m/s, 试样摩擦表面单位面积吸收的能量进一步增大, 温度进一步升高, 摩擦表面在较大剪切力的作用下发生了较为严重的脱落。这是由于摩擦产生的高温引起材料软化, 破坏了形成的氧化膜, 降低了分子键的抗剪切强度, 从而在摩擦面上出现了不同程度的犁沟[13-14]

    图  4  铜基粉末冶金摩擦材料在不同刹车速度下的扫描电子显微形貌
    Figure  4.  SEM images of the Cu-based powder metallurgy friction material under the different velocity

    (1) 铜基粉末冶金摩擦材料的摩擦磨损性能与刹车速度密切相关。随着刹车速度的增大, 刹车能量急剧升高, 摩擦材料的摩擦吸收功率近似线性增长, 而摩擦系数呈先增大后减小的趋势, 并且铜基粉末冶金摩擦材料的线磨损率与质量磨损随刹车速度增长呈上升趋势。

    (2) 在一定的刹车速度下, 铜基粉末冶金摩擦材料摩擦表面的氧化膜愈趋平滑连续。但随着刹车速度的提高, 铜基体自身发生软化, 破坏了已形成的氧化膜, 降低了分子键的抗剪切强度, 从而增大了磨损量。

  • 图  1   混合粉末X射线衍射图谱

    Figure  1.   XRD patterns of the composite powders

    图  2   烧结合金X射线衍射图谱

    Figure  2.   XRD patterns of the sintered alloys

    图  3   烧结合金X射线衍射图谱局部图

    Figure  3.   Localized peaks of the XRD patterns for the sintered alloys

    图  4   混合粉末显微形貌:(a)WC‒20Fe;(b)WC‒20Ni;(c)WC‒20Co

    Figure  4.   SEM images of the mixed powders: (a) WC‒20Fe; (b) WC‒20Ni; (c) WC‒20Co

    图  5   烧结合金显微形貌:(a)WC‒20Fe;(b)WC‒20Ni;(c)WC‒20Ni;(d)WC‒20Co

    Figure  5.   SEM images of the sintered alloys: (a) WC‒20Fe; (b) WC‒20Ni; (c) WC‒20Ni; (d) WC‒20Co

    图  6   烧结合金断口显微形貌:(a)WC‒20Fe;(b)WC‒20Ni;(c)WC‒20Co

    Figure  6.   Fracture surface SEM images of the sintered alloys: (a) WC‒20Fe; (b) WC‒20Ni; (c) WC‒20Co

    表  1   硬质合金晶粒尺寸和钨在粘结相中的溶解度

    Table  1   Grain size of the cemented carbides and the solubility of W in the binder phases

    试样钨在粘结剂中的溶解度
    (质量分数) / %
    WC平均晶粒
    尺寸 / μm
    WC‒20Fe1.915±0.2941.29
    WC‒20Ni10.753±0.4287.07
    WC‒20Co4.583±0.2392.93
    下载: 导出CSV

    表  2   烧结合金物理性能

    Table  2   Physical properties of the sintered alloys

    试样相对密度 /
    %
    维氏硬度,
    HV10 / (kg∙mm‒2)
    抗弯强度 /
    MPa
    WC‒20Fe97.36886.581850
    WC‒20Ni99.23650.241630
    WC‒20Co99.67934.412720
    下载: 导出CSV
  • [1]

    Sun J, Zhao J, Gong F, et al. Development and application of WC-based alloys bonded with alternative binder phase. Crit Rev Solid State, 2019, 44(3): 211 DOI: 10.1080/10408436.2018.1483320

    [2]

    Santos R F, Ferro Rocha A M, Bastos A C, et al. Microstructural characterization and corrosion resistance of WC‒Ni‒Cr‒Mo composite—The effect of Mo. Int J Refract Met Hard Mater, 2020, 86: 105090 DOI: 10.1016/j.ijrmhm.2019.105090

    [3]

    Ortner H M, Ettmayer P, Kolaska H. The history of the technological progress of hardmetals. Int J Refract Met Hard Mater, 2014, 44: 148 DOI: 10.1016/j.ijrmhm.2013.07.014

    [4]

    Pan Y F, Liu A J, Huang L. Effects of metal binder content and carbide grain size on the microstructure and properties of SPS manufactured WC‒Fe composites. J Alloys Compd, 2019, 784: 519 DOI: 10.1016/j.jallcom.2019.01.057

    [5]

    Guo Z X, Xiong J, Yang M, et al. Characterization and properties of MTCVD Ti(C, N) coated cemented carbide substrates with Fe/Ni binder. Int J Refract Met Hard Mater, 2010, 28(2): 238 DOI: 10.1016/j.ijrmhm.2009.10.004

    [6] 万小虎, 李文鹏, 苏华. 一种高强度、高硬度WC‒6Ni硬质合金的研究. 粉末冶金技术, 2015, 33(5): 323 DOI: 10.3969/j.issn.1001-3784.2015.05.001

    Wan X H, Li W P, Su H. The study of a cemented carbide WC‒6Ni with high-strength and high hardness. Powder Metall Technol, 2015, 33(5): 323 DOI: 10.3969/j.issn.1001-3784.2015.05.001

    [7] 羊建高, 谭敦强, 陈颢. 硬质合金. 长沙: 中南大学出版社, 2012

    Yang J G, Tan D Q, Chen H. Cemented Carbide. Changsha: Central South University Press, 2012

    [8]

    Shon I J, Jeong I K, Ko I Y, et al. Sintering behavior and mechanical properties of WC‒10Co, WC‒10Ni and WC‒10Fe hard materials produced by high-frequency induction heated sintering. Ceram Int, 2009, 35(1): 339 DOI: 10.1016/j.ceramint.2007.11.003

    [9]

    Gu L, Huang J, Xie C. Effects of carbon content on microstructure and properties of WC‒20Co cemented carbides. Int J Refract Met Hard Mater, 2014, 42: 228 DOI: 10.1016/j.ijrmhm.2013.09.010

    [10]

    Trung T B, Zuhailawati H, Ahmad Z A, et al. Sintering characteristics and properties of WC-10AISI304 (stainless steel) hardmetals with added graphite. Mater Sci Eng A, 2014, 605: 210 DOI: 10.1016/j.msea.2014.03.053

    [11]

    Borgh I, Hedström P, Borgenstam A, et al. Effect of carbon activity and powder particle size on WC grain coarsening during sintering of cemented carbides. Int J Refract Met Hard Mater, 2014, 42: 30 DOI: 10.1016/j.ijrmhm.2013.10.004

    [12]

    Borgh I, Hedström P, Persson T, et al. Microstructure, grain size distribution and grain shape in WC–Co alloys sintered at different carbon activities. Int J Refract Met Hard Mater, 2014, 43: 205 DOI: 10.1016/j.ijrmhm.2013.12.007

    [13]

    Bounhoure V, Lay S, Charlot F, et al. Effect of C content on the microstructure evolution during early solid state sintering of WC‒Co alloys. Int J Refract Met Hard Mater, 2014, 44: 27 DOI: 10.1016/j.ijrmhm.2013.12.012

    [14]

    Konyashin I, Hlawatschek S, Ries B, et al. On the mechanism of WC coarsening in WC‒Co hardmetals with various carbon contents. Int J Refract Met Hard Mater, 2009, 27(2): 234 DOI: 10.1016/j.ijrmhm.2008.09.001

    [15]

    Kim S, Han S H, Park J K, et al. Variation of WC grain shape with carbon content in the WC‒Co alloys during liquid-phase sintering. Scr Mater, 2003, 48(5): 635 DOI: 10.1016/S1359-6462(02)00464-5

    [16]

    Uhrenius B, Pastor H, Pauty E. On the composition of Fe‒Ni‒Co‒WC-based cemented carbides. Int J Refract Met Hard Mater, 1997, 15(1-3): 139 DOI: 10.1016/S0263-4368(96)00023-6

    [17]

    Fernandes C M, Senos A M R. Cemented carbide phase diagrams: A review. Int J Refract Met Hard Mater, 2011, 29(4): 405 DOI: 10.1016/j.ijrmhm.2011.02.004

    [18]

    Wittmann B, Schubert W D, Lux B. WC grain growth and grain growth inhibition in nickel and iron binder hardmetals. Int J Refract Met Hard Mater, 2002, 20(1): 51 DOI: 10.1016/S0263-4368(01)00070-1

    [19] 郭瑜, 李志友, 李烨. η相粉末的制备及烧结工艺对板状WC晶粒的影响. 粉末冶金技术, 2017, 35(1): 39 DOI: 10.3969/j.issn.1001-3784.2017.01.007

    Guo Y, Li Z Y, Li Y. Preparation of η phase powder and the effect of sintering process on the plate-like WC grain. Powder Metall Technol, 2017, 35(1): 39 DOI: 10.3969/j.issn.1001-3784.2017.01.007

  • 期刊类型引用(10)

    1. 徐琴,张驰,樊江磊,刘建秀. Cr-Fe粒度对铜基粉末冶金材料摩擦磨损性能的影响. 特种铸造及有色合金. 2024(05): 587-590 . 百度学术
    2. 陈孝婷,卢纯,莫继良,张庆贺,赵婧. 考虑摩擦升温的铁路列车制动摩擦块高温磨损机制演变. 中国表面工程. 2023(03): 142-151 . 百度学术
    3. 刘思涵,耿雪骞,王晔,马运章,陈德峰,张波,曹宏发,齐冀,吕宝佳. Cu基粉末冶金闸片高速制动性能. 粉末冶金技术. 2023(03): 210-217 . 本站查看
    4. 安先龙,王国权,王立勇,陈勇. 铜基粉末冶金摩擦块摩擦磨损特性研究. 机械设计与制造. 2023(12): 209-213+218 . 百度学术
    5. 贾潞. 铜基粉末冶金摩擦材料粘接层失效机理研究. 铁道机车车辆. 2023(06): 111-116 . 百度学术
    6. 刘喜双,许雄飞,王秀飞,文国富,尹彩流,冯驰原. 鳞片石墨含量对地铁集电靴用铜基粉末冶金材料性能的影响. 粉末冶金工业. 2021(03): 18-24 . 百度学术
    7. 任澍忻,陈文革,冯涛,欧阳方明. 粉末冶金制备碳纤维增强铁-铜基摩擦材料的组织与性能. 粉末冶金技术. 2020(02): 104-112 . 本站查看
    8. 韩明,杜建华,宁克焱,李辉,王志勇,邱倩. 温度分布对铜基摩擦材料点蚀损伤的影响. 粉末冶金技术. 2019(01): 18-22 . 本站查看
    9. 姚萍屏,肖叶龙,张忠义,周海滨,贡太敏,赵林,邓敏文. 高速列车粉末冶金制动材料的研究进展. 中国材料进展. 2019(02): 116-125 . 百度学术
    10. 丁干,王国权,曾圣迪,陈勇,王立勇,雷桐辉. 铜基粉末冶金材料摩擦磨损性能分析. 北京信息科技大学学报(自然科学版). 2019(04): 61-65+96 . 百度学术

    其他类型引用(6)

图(6)  /  表(2)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  909
  • PDF下载量:  106
  • 被引次数: 16
出版历程
  • 收稿日期:  2021-06-21
  • 网络出版日期:  2023-03-21
  • 刊出日期:  2023-04-27

目录

/

返回文章
返回