超/特高压直流输电工作环境中纯铜部件点蚀行为

何学敏 王贵山 李应宏 史美娟

何学敏, 王贵山, 李应宏, 史美娟. 超/特高压直流输电工作环境中纯铜部件点蚀行为[J]. 粉末冶金技术, 2024, 42(1): 91-96. doi: 10.19591/j.cnki.cn11-1974/tf.2020110003
引用本文: 何学敏, 王贵山, 李应宏, 史美娟. 超/特高压直流输电工作环境中纯铜部件点蚀行为[J]. 粉末冶金技术, 2024, 42(1): 91-96. doi: 10.19591/j.cnki.cn11-1974/tf.2020110003
HE Xuemin, WANG Guishan, LI Yinghong, SHI Meijuan. Pitting corrosion behavior of pure copper components in EHV/UHV DC transmission environment[J]. Powder Metallurgy Technology, 2024, 42(1): 91-96. doi: 10.19591/j.cnki.cn11-1974/tf.2020110003
Citation: HE Xuemin, WANG Guishan, LI Yinghong, SHI Meijuan. Pitting corrosion behavior of pure copper components in EHV/UHV DC transmission environment[J]. Powder Metallurgy Technology, 2024, 42(1): 91-96. doi: 10.19591/j.cnki.cn11-1974/tf.2020110003

超/特高压直流输电工作环境中纯铜部件点蚀行为

doi: 10.19591/j.cnki.cn11-1974/tf.2020110003
详细信息
    通讯作者:

    E-mail: 541580876@qq.com

  • 中图分类号: TG172.5

Pitting corrosion behavior of pure copper components in EHV/UHV DC transmission environment

More Information
  • 摘要: 超/特高压输电是实现全球能源互联的核心技术。作为应用最广泛的输电系统导体材料,铜及铜合金的耐蚀性被重点关注。在超/特高压直流输电过程中,周围环境存在较大磁场,导致铜部件的服役环境与普通输电环境不同。采用动电位极化、电化学阻抗谱和元素分析等方法对纯铜在超/特高压环境下的电化学腐蚀行为进行了研究。结果表明:在超/特高压环境下,纯铜在3.5%NaCl溶液(质量分数)中的极限扩散电流高于无磁场条件下的极限扩散电流,并且无磁场条件下的反应电阻比施加了0.1 T磁场条件下的反应电阻明显提高。结合电化学阻抗谱、X射线衍射及元素分析可知,0.1 T磁场会使纯铜的耐蚀性降低,主要腐蚀产物为氧化亚铜。
  • 图  1  电化学实验装置示意图

    Figure  1.  Schematic diagram of the electrochemical experiment device

    图  2  纯铜在不同条件下的极化曲线

    Figure  2.  Polarization curves of the pure copper under the different conditions

    图  3  纯铜在不同条件下的电化学阻抗谱(Nyquist图谱)

    Figure  3.  EIS (Nyquist patterns) of the pure copper under the different conditions

    图  4  纯铜在不同条件下的电化学阻抗谱(Bode图谱):(a)电阻值;(b)相角

    Figure  4.  EIS (Bode patterns) of the pure copper under the different conditions: (a) resistance value; (b) phase angle

    图  5  纯铜在电化学阻抗谱测试中的等效电路

    Figure  5.  Equivalent circuit diagram of the pure copper under the different conditions in EIS test

    图  6  纯铜在NaCl溶液中腐蚀产物X衍射图谱

    Figure  6.  XRD patterns of the corrosion products for the pure copper in 3.5%NaCl solution

    图  7  纯铜腐蚀产物能谱分析:(a)0 T;(b)0.1 T

    Figure  7.  Energy spectrum analysis of the corrosion products for the pure copper: (a) 0 T; (b) 0.1 T

    表  1  纯铜化学成分(质量分数)

    Table  1.   Chemical composition of the pure copper %

    CuPFeZnSiAgNi
    99.90000.00070.00180.00290.00140.00100.0022
    下载: 导出CSV

    表  2  纯铜在不同条件下的极化曲线拟合结果

    Table  2.   Fitting results of the polarization curves of the pure copper under the different conditions

    磁感应
    强度 / T
    腐蚀电位,
    Ecorr / mV
    腐蚀电流,
    Icorr / (μA·cm−2)
    极限扩散电流,
    Id / (μA·cm−2)
    0 −267.954 0.970 13.43×103
    0.1 −291.224 1.067 17.43×103
    下载: 导出CSV

    表  3  纯铜在不同条件下电化学阻抗谱拟合结果

    Table  3.   EIS fitting results of the pure copper under the different conditions

    磁感应强度 / T RS / (Ω·cm2) CPE1 / F R1 / (Ω·cm2) CPE2 / F Rct / (Ω·cm2) WR / Ω
    0 1.000×10−2 2.146×10−9 6.766 1.841×10−6 46.440 1.787×10−4
    0.1 1.000×10−2 8.044×10−9 3.097 1.276×10−17 4.715×10−2 2.864×10−4
    下载: 导出CSV
  • [1] Chang H, Fan J C. System design and its localization of UHVDC transmission project. Power Syst Technol, 2006, 30(16): 1 doi: 10.3321/j.issn:1000-3673.2006.16.001

    常浩, 樊纪超. 特高压直流输电系统成套设计及其国产化. 电网技术, 2006, 30(16): 1 doi: 10.3321/j.issn:1000-3673.2006.16.001
    [2] He C W, Liu P H. Application of UHVDC transmission technology. Technol Innov Appl, 2020(20): 177

    何慈武, 刘鹏华. 特高压直流输电技术的应用探究. 科技创新与应用, 2020(20): 177
    [3] Zhao X L, Liu Y, Wu J W, et al. Technical and economic demands of HVDC submarine cable technology for Global Energy Interconnection. Wire J Int, 2021, 54(3): 62
    [4] Wang H T. Study on new protection principle of UHV DC transmission line. Electron Test, 2016(24): 51 doi: 10.3969/j.issn.1000-8519.2016.24.030

    王宏韬. 特高压直流输电线路保护新原理研究. 电子测试, 2016(24): 51 doi: 10.3969/j.issn.1000-8519.2016.24.030
    [5] Du X Q, Yang Q S, Chen Y, et al. Galvanic corrosion behavior of copper/titanium galvanic couple in artificial seawater. Trans Nonferrous Met Soc China, 2014, 24(2): 570 doi: 10.1016/S1003-6326(14)63097-1
    [6] Van Ingelgem Y, Tourwe E, Vereecken J, et al. Application of multisine impedance spectroscopy, FE-AES and FE-SEM to study the early stages of copper corrosion. Electrochim Acta, 2008, 53(25): 7523 doi: 10.1016/j.electacta.2008.01.052
    [7] Wu H, Dong C C, Ding G Q, et al. Corrosion resistance of three kinds of copper alloys in first-class reverse osmosis seawater. Equip Environ Eng, 2020, 17(6): 72

    吴恒, 董彩常, 丁国清, 等. 铜合金在一级反渗透海水中的耐蚀性对比研究. 装备环境工程, 2020, 17(6): 72
    [8] Feng Q J. Study of Electrochemical Corrosion Behaviors of Copper, Zinc and Their Alloy [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2015

    冯秋洁. 铜、锌及其合金的电化学腐蚀研究[学位论文]. 武汉: 华中科技大学, 2015
    [9] Song Q N, Tong Y, Xu N, et al. Synergistic effect between cavitation erosion and corrosion for various copper alloys in sulphide-containing 3.5% NaCl solutions. Wear, 2020, 450-451: 203258
    [10] Luo J Q, Hein C, Pierson J F, et al. Localised corrosion attacks and oxide growth on copper in phosphate-buffered saline. Mater Charact, 2019, 158: 109985 doi: 10.1016/j.matchar.2019.109985
    [11] Guo D, Kwok C T. Effect of pH on the corrosion behavior of tungsten-copper alloys. Corros Sci, 2020, 177: 108994 doi: 10.1016/j.corsci.2020.108994
    [12] Zhang X, Wang Z H, Zhou Z H, et al. Impact of magnetic field on corrosion performance of Al–Mg alloy with different electrode potential phases. Intermetallics, 2021, 129: 107037 doi: 10.1016/j.intermet.2020.107037
    [13] Wang J R, Bai Z H, Xiao K, et al. Effect of static magnetic field on mold corrosion of printed circuit boards. Bioelectrochemistry, 2020, 131: 107394 doi: 10.1016/j.bioelechem.2019.107394
    [14] Fu Y Y, Xu L, Yin Y L, et al. Analysis of electromagnetic environment of ±800 kV DC transmission lines. Heilongjiang Electr Power, 2014, 36(2): 118 doi: 10.3969/j.issn.1002-1663.2014.02.006

    付焱燚, 徐溧, 阴酉龙, 等. ±800 kV直流输电线路电磁场环境分析. 黑龙江电力, 2014, 36(2): 118 doi: 10.3969/j.issn.1002-1663.2014.02.006
    [15] Hou L W. Safety Assessment of Electromagnetic Environment for UHVDC Transmission Lines [Dissertation]. Lanzhou: Lanzhou Jiaotong University, 2017

    侯立伟. 特高压直流输电线路电磁环境安全评估[学位论文]. 兰州: 兰州交通大学, 2017
    [16] Hulett L D, Bacarella A L, LiDonnici L, et al. Analysis of protective oxide films on copper—nickel alloys by photoelectron spectroscopy. J Electron Spectrosc Relat Phenom, 1972, 1(2): 169
    [17] Chen S X, Fan D, Zhang S P. Effects of magnetic field on electrochemical corrosion behavior. Mater Prot, 2015, 48(9): 31

    陈散兴, 樊栋, 张三平. 磁场对电化学腐蚀行为的影响. 材料保护, 2015, 48(9): 31
    [18] Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution. J Mater Sci Technol, 2010, 26(4): 355 doi: 10.1016/S1005-0302(10)60058-8
    [19] O'Brien R N, Santhanam K S V. Electrochemical hydrodynamics in a magnetic field with laser interferometry. Electroch Acta, 1987, 32(12): 1679 doi: 10.1016/0013-4686(87)80003-8
    [20] Cheng J, Pan J S, Wang T Q, et al. Micro-galvanic corrosion of Cu/Ru couple in potassium periodate (KIO4) solution. Corros Sci, 2018, 137: 184 doi: 10.1016/j.corsci.2018.03.045
    [21] Zou S W, Li X G, Dong C F, et al. Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board under wet H2S environment. Electrochim Acta, 2013, 114: 363 doi: 10.1016/j.electacta.2013.10.051
    [22] Guo B, Zhang P, Jin Y P, et al. Effects of alternating magnetic field on the corrosion rate and corrosion products of copper. Rare Met, 2008, 27(3): 324 doi: 10.1016/S1001-0521(08)60138-2
    [23] Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media—a critical review. Corros Sci, 2004, 46(1): 109 doi: 10.1016/S0010-938X(02)00257-3
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1552
  • HTML全文浏览量:  14
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 刊出日期:  2024-02-28

目录

    /

    返回文章
    返回