机械合金化结合放电等离子烧结技术制备热电材料的研究进展

石建磊 裴俊 张波萍 李敬锋

石建磊, 裴俊, 张波萍, 李敬锋. 机械合金化结合放电等离子烧结技术制备热电材料的研究进展[J]. 粉末冶金技术, 2021, 39(1): 4-14. doi: 10.19591/j.cnki.cn11-1974/tf.2020120005
引用本文: 石建磊, 裴俊, 张波萍, 李敬锋. 机械合金化结合放电等离子烧结技术制备热电材料的研究进展[J]. 粉末冶金技术, 2021, 39(1): 4-14. doi: 10.19591/j.cnki.cn11-1974/tf.2020120005
SHI Jian-lei, PEI Jun, ZHANG Bo-ping, LI Jing-feng. Research progress on processing of thermoelectric materials by mechanical alloying combined with spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(1): 4-14. doi: 10.19591/j.cnki.cn11-1974/tf.2020120005
Citation: SHI Jian-lei, PEI Jun, ZHANG Bo-ping, LI Jing-feng. Research progress on processing of thermoelectric materials by mechanical alloying combined with spark plasma sintering[J]. Powder Metallurgy Technology, 2021, 39(1): 4-14. doi: 10.19591/j.cnki.cn11-1974/tf.2020120005

机械合金化结合放电等离子烧结技术制备热电材料的研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2020120005
详细信息
    通讯作者:

    E-mail:jingfeng@mail.tsinghua.edu.cn

  • 中图分类号: TB34

Research progress on processing of thermoelectric materials by mechanical alloying combined with spark plasma sintering

More Information
  • 摘要: 近年来,热电材料研究取得重要突破,不仅传统Bi2Te3、PbTe基热电材料性能得到提升,同时还发现一批新型高性能热电材料,如SnSe、GeTe等。热电材料性能的提升不仅取决于材料成分、结构及缺陷,还与制备工艺密不可分。机械合金化(mechanical alloying,MA)结合放电等离子体烧结(spark plasma sintering,SPS)的粉末冶金技术是制备热电材料的重要方法,该方法简单、高效,获得的晶粒尺寸较小,同时可以引入纳米结构和缺陷,有助于降低晶格热导率,获得高热电性能。此外,基于机械合金化结合放电等离子体烧结技术制备出的块体材料具有更优的力学性能,可以有效地增强热电器件的使用寿命。本文介绍了机械合金化与放电等离子体烧结方法制备热电材料的基本原理和关键影响因素,并概述了利用该方法制备的碲化物、硫化物和硒化物基热电材料的研究进展。
  • 图  1  机械合金化工作示意图[31]

    Figure  1.  Schematic diagram of the mechanical alloying (MA) processing[31]

    图  2  SPS-211LX放电等离子体烧结炉外型图(a)及烧结原理图(b)[31]

    Figure  2.  Profile (a) and schematic diagram (b) of the SPS-211LX spark plasma sintering furnace[31]

    图  3  GeTe放电等离子烧结过程中压头位移与温度关系曲线

    Figure  3.  Temperature dependence on the punch displacement of GeTe by SPS

    图  4  n型和p型热电材料放电等离子烧结过程中佩尔捷效应示意图[31]

    Figure  4.  Schematic diagram of Peltier effect during SPS for n-type and p-type TE materials[31]

    图  5  热锻工艺示意图[31]

    Figure  5.  Schematic diagram of the hot-forging process[31]

    图  6  各体系热电材料制备工艺和对应ZTmax

    Figure  6.  Preparation process and the corresponding ZTmax values of the thermoelectric materials

  • [1] Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457 doi: 10.1126/science.1158899
    [2] Snyder G J, Toberer E S. Complex thermoelectric materials. Nat Mater, 2008, 7(2): 105 doi: 10.1038/nmat2090
    [3] Pei Y Z, Shi X Y, Lalonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473: 66 doi: 10.1038/nature09996
    [4] Zhang J, Wu D, He D S, et al. Extraordinary thermoelectric performance realized in n-type PbTe through multiphase nanostructure engineering. Adv. Mater, 2017, 29(39): 7
    [5] Liu Z H, Mao J, Liu T H, et al. Nano-microstructural control of phonon engineering for thermoelectric energy harvesting. MRS Bull, 2018, 43(3): 181 doi: 10.1557/mrs.2018.7
    [6] Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634 doi: 10.1126/science.1156446
    [7] Kim S I, Lee K H, Mun H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109 doi: 10.1126/science.aaa4166
    [8] Hu L P, Wu H J, Zhu T J, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv Energy Mater, 2015, 5(17): 13
    [9] Biswas K, He J Q, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416): 414 doi: 10.1038/nature11439
    [10] Wu H J, Zhao L D, Zheng F S, et al. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Nat Commun, 2014, 5(9): 4515
    [11] Tang Y L, Gibbs Z M, Agapito L A, et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat Mater, 2015, 14(12): 1223 doi: 10.1038/nmat4430
    [12] Wang S Y, Yang J, Wu L H, et al. On intensifying carrier impurity scattering to enhance thermoelectric performance in Cr-doped CeyCo4Sb12. Adv Funct Mater, 2015, 25(42): 6660 doi: 10.1002/adfm.201502782
    [13] Zhu T J, Fu C G, Xie H H, et al. High efficiency half-Heusler thermoelectric materials for energy harvesting. Adv Energy Mater, 2015, 5(19): 13
    [14] Fu C G, Bai S Q, Liu Y T, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat Commun, 2015, 6(7): 8144
    [15] Chung D Y, Hogan T, Brazis P, et al. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications. Science, 2000, 287(5455): 1024 doi: 10.1126/science.287.5455.1024
    [16] Shi X, Yang J, Bai S Q, et al. On the design of high-efficiency thermoelectric clathrates through a systematic cross-substitution of framework elements. Adv Funct Mater, 2010, 20(5): 755 doi: 10.1002/adfm.200901817
    [17] Zhao L D, Lo S H, Zhang Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373 doi: 10.1038/nature13184
    [18] Duong A T, Nguyen V Q, Duvjir G, et al. Achieving ZT = 2.2 with Bi-doped n-type SnSe single crystals. Nat Commun, 2016, 7: 6
    [19] Zhao L L, Wang X L, Wang J Y, et al. Superior intrinsic thermoelectric performance with ZT of 1.8 in single-crystal and melt-quenched highly dense Cu2−xSe bulks. Sci Rep, 2015, 5: 7671 doi: 10.1038/srep07671
    [20] Zhao L D, Tan G J, Hao S Q, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351(6269): 141 doi: 10.1126/science.aad3749
    [21] Peng K L, Lu X, Zhan H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy Environ Sci, 2016, 9(2): 454 doi: 10.1039/C5EE03366G
    [22] Heremans J P. Thermoelectricity: The ugly duckling. Nature, 2014, 508(7496): 327 doi: 10.1038/508327a
    [23] Zhang X, Zhao L D. Thermoelectric materials: Energy conversion between heat and electricity. J Mater, 2015, 1(2): 92
    [24] Vineis C J, Shakouri A, Majumdar A, et al. Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater, 2010, 22(36): 3970 doi: 10.1002/adma.201000839
    [25] Li J F, Liu W S, Zhao L D, et al. High-performance nanostructured thermoelectric materials. NPG Asia Mater, 2010, 2(4): 152 doi: 10.1038/asiamat.2010.138
    [26] Suryanarayana C, Ivanov E, Boldyrev V V. The science and technology of mechanical alloying. Mater Sci Eng, 2001, 304: 151
    [27] Liu J, Li J F. Bi2Te3 and Bi2Te3/Nano-SiC prepared by mechanical alloying and spark plasma sintering // Key Engineering Materials. Shenzhen, 2005: 397
    [28] Benjamin J S. Dispersion strengthened superalloys by mechanical alloying. Metall Trans, 1970, 1(10): 2943
    [29] Benjamin J S. Fundamentals of mechanical alloying. Mater Sci Forum, 1992, 88-90: 1 doi: 10.4028/www.scientific.net/MSF.88-90.1
    [30] Benjamin J S, Volin T E. The mechanism of mechanical alloying. Metall Trans, 1974, 5(8): 1929 doi: 10.1007/BF02644161
    [31] Li J F, Pan Y, Wu C F, et al. Processing of advanced thermoelectric materials. Sci China Technol Sci, 2017, 60(9): 1347 doi: 10.1007/s11431-017-9058-8
    [32] Chen Z H, Chen D. Mechanical Alloying and Solid Liquid Reactive Ball Milling. Beijing: Chemical Industry Press, 2005

    陈振华, 陈鼎. 机械合金化与固液反应球磨. 北京: 化学工业出版社, 2005
    [33] Liu Y C, Ding J X, Xu B, et al. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Appl Phys Lett, 2015, 106(23): 5
    [34] Pan Y, Li J F. Thermoelectric performance enhancement in n-type Bi2(Te,Se)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater, 2016, 8(6): e275 doi: 10.1038/am.2016.67
    [35] Starý Z, Horák J, Stordeur M, et al. Antisite defects in Sb2−xBixTe3 mixed crystals. J Phys Chem Solids, 1988, 49(1): 29 doi: 10.1016/0022-3697(88)90130-8
    [36] Navrátil J, Starý Z, Plechác̆ek T. Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater Res Bull, 1996, 31(12): 1559 doi: 10.1016/S0025-5408(96)00149-3
    [37] Pan Y, Wei T R, Wu C F, et al. Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3−xSex alloys: the combined effect of point defect and Se content. J Mater Chem C, 2015, 3(40): 10583 doi: 10.1039/C5TC02219C
    [38] Dong J F, Sun F H, Tang H C, et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy Environ Sci, 2019, 12(4): 1396 doi: 10.1039/C9EE00317G
    [39] Liu W S, Zhang B P, Li J F, et al. Thermodynamic explanation of solid-state reactions mechanism in synthesis process of CoSb3 via mechanical alloying. Acta Phys Sin, 2006, 55(1): 465 doi: 10.3321/j.issn:1000-3290.2006.01.082

    刘玮书, 张波萍, 李敬锋, 等. 机械合金化合成CoSb3过程中的固相反应机理的热力学解释. 物理学报, 2006, 55(1): 465 doi: 10.3321/j.issn:1000-3290.2006.01.082
    [40] Zou M M, Li J F, Guo P J, et al. Synthesis and thermoelectric properties of fine-grained FeVSb system half-Heusler compound polycrystals with high phase purity. J Phys D: Appl Phys, 2010, 43(41): 6
    [41] Li Z Y, Li J F. Fine-grained and nanostructured AgPbmSbTem+2 alloys with high thermoelectric figure of merit at medium temperature. Adv Energy Mater, 2014, 4(2): 8
    [42] Qin P, Qian X, Ge Z H, et al. Improvements of thermoelectric properties for p-type Cu1.8S bulk materials via optimizing the mechanical alloying process. Inorg Chem Front, 2017, 4(7): 1192 doi: 10.1039/C7QI00208D
    [43] Lux J. Improved Manufacture of Electric Incandescence Lamp Filaments from Tungsten or Molybdenum or an Alloy thereof: US Patent, 27002. 1906
    [44] Inoue K. Electric-discharge Sintering: US Patent, 3241956. 1966-3-22
    [45] Bai L, Ge C C, Shen W P. Spark plasma sintering technology. Powder Metall Technol, 2007, 25(3): 217 doi: 10.3321/j.issn:1001-3784.2007.03.013

    白玲, 葛昌纯, 沈卫平. 放电等离子烧结技术. 粉末冶金技术, 2007, 25(3): 217 doi: 10.3321/j.issn:1001-3784.2007.03.013
    [46] Zhao L D, Zhang B P, Li J F, et al. Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering. Physica B, 2007, 400(1-2): 11 doi: 10.1016/j.physb.2007.06.009
    [47] Wei T R, Wu C F, Sun W, et al. Is Cu3SbSe3 a promising thermoelectric material. RSC Adv, 2015, 5(53): 42848 doi: 10.1039/C5RA03953C
    [48] Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng A, 2000, 287(2): 183 doi: 10.1016/S0921-5093(00)00773-5
    [49] Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv Eng Mater, 2014, 16(7): 830 doi: 10.1002/adem.201300409
    [50] Liu H L, Shi X, Xu F F, et al. Copper ion liquid-like thermoelectrics. Nat Mater, 2012, 11(5): 422 doi: 10.1038/nmat3273
    [51] Meng Q L, Kong S, Huang Z W, et al. Simultaneous enhancement in the power factor and thermoelectric performance of copper sulfide by In2S3 doping. J Mater Chem A, 2016, 4(32): 12624 doi: 10.1039/C6TA03780A
    [52] Zhuang H L, Pan Y, Li J F, et al. Thermoelectric Cu-doped (Bi,Sb)2Te3: Performance enhancement and stability against high electric current pulse. Nano Eneygy, 2019, 60: 857
    [53] Gao M, Zhang J S, Rowe D M. Thermoelectric Conversion and Its Application. Beijing: The Publishing House of Ordnance Industry, 1996

    高敏, 张景韶, Rowe D M. 温差电转换及其应用. 北京: 兵器工业出版社, 1996
    [54] Chen C, Liu D W, Zhang B P, et al. Enhanced thermoelectric properties obtained by compositional optimization in p-type BixSb2−xTe3 fabricated by mechanical alloying and spark plasma sintering. J Electron Mater, 2011, 40(5): 942 doi: 10.1007/s11664-010-1463-2
    [55] Zhao L D, Wu H J, Hao S Q, et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ Sci, 2013, 6(11): 3346 doi: 10.1039/c3ee42187b
    [56] Zhang Q Y, Yang S Q, Zhang Q, et al. Effect of aluminum on the thermoelectric properties of nanostructured PbTe. Nanotechnology, 2013, 24(34): 345705 doi: 10.1088/0957-4484/24/34/345705
    [57] Fu L W, Cui J, Yu Y, et al. Achieving a fine balance between the strong mechanical and high thermoelectric properties of n-type PbTe-3%Sb materials by alloying PbS. J Mater Chem A, 2019, 7(11): 6304 doi: 10.1039/C9TA00400A
    [58] Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818 doi: 10.1126/science.1092963
    [59] Kosuga A, Uno M, Kurosaki K, et al. Thermoelectric properties of stoichiometric Ag1−xPb18SbTe20(x=0, 0.1, 0.2). J Alloys Compds, 2005, 391(1-2): 288 doi: 10.1016/j.jallcom.2004.08.049
    [60] Wang H, Li J F, Nan C W, et al. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl Phys Lett, 2006, 88(9): 092104 doi: 10.1063/1.2181197
    [61] Zhou M, Li J F, Kita T. Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. J Am Chem Soc, 2008, 130(13): 4527 doi: 10.1021/ja7110652
    [62] Hong M, Chen Z G, Yang L, et al. Realizing ZT of 2.3 in Ge1−xySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Adv Mater, 2018, 30(11): 8
    [63] Li J, Zhang X Y, Chen Z W, et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2018, 2(5): 976 doi: 10.1016/j.joule.2018.02.016
    [64] Jin Y, Zhang X X, Xiao Y. et al. Synergistically improving thermoelectric and mechanical properties of Ge0.94Bi0.06Te through dispersing nano-SiC. Scr Mater, 2020, 183: 22 doi: 10.1016/j.scriptamat.2020.03.018
    [65] He Y, Day T, Zhang T S, et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv. Mater, 2014, 26(23): 3974 doi: 10.1002/adma.201400515
    [66] Zhao L L, Wang X L, Fei F Y, et al. High thermoelectric and mechanical performance in highly dense Cu2−xS bulks prepared by a melt-solidification technique. J Mater Chem A, 2015, 3(18): 9432 doi: 10.1039/C5TA01667C
    [67] Mansour B A. Electrical and thermoelectric properties of In and Cd doped Cu1.8S. Phys Status Solidi, 1993, 136(1): 153
    [68] Ge Z H, Liu X Y, Feng D, et al. High-performance thermoelectricity in nanostructured earth-abundant copper sulfides bulk materials. Adv Energy Mater, 2016, 6(16): 1600607 doi: 10.1002/aenm.201600607
    [69] Tang H C, Sun F H, Dong J F, et al. Graphene network in copper sulfide leading to enhanced thermoelectric properties and thermal stability. Nano Energy, 2018, 49: 267 doi: 10.1016/j.nanoen.2018.04.058
    [70] Qin P, Ge Z H, Chen Y X, et al. Achieving high thermoelectric performance of Cu1.8S composites with WSe2 nanoparticles. Nanotechnology, 2018, 29(34): 10
    [71] Suekuni K, Tsuruta K, Ariga T, et al. Thermoelectric properties of mineral tetrahedrites Cu10Tr2Sb4S13 with low thermal conductivity. Appl Phys Express, 2012, 5(5): 051201 doi: 10.1143/APEX.5.051201
    [72] Barbier T, Rollin Martinet S, Lemoine P, et al. Thermoelectric materials: a new rapid synthesis process for nontoxic and high performance tetrahedrite compounds. J Am Ceram Soc, 2016, 99(1): 51 doi: 10.1111/jace.13838
    [73] Sun F H, Wu C F, Li Z L, et al. Powder metallurgically synthesized Cu12Sb4S13 tetrahedrites: phase transition and high thermoelectricity. RSC Adv, 2017, 7(31): 18909 doi: 10.1039/C7RA02564E
    [74] Barbier T, Lemoine P, Martinet S, et al. Up-scaled synthesis process of sulphur based thermoelectric materials. RSC Adv, 2016, 6(12): 10044 doi: 10.1039/C5RA23218J
    [75] Weller D P, Stevens D L, Kunkel G E, et al. Thermoelectric performance of tetrahedrite synthesized by a modified polyol process. Chem Mater, 2017, 29(4): 1656 doi: 10.1021/acs.chemmater.6b04950
    [76] Sun F H, Dong J F, Tang H C, et al. Enhanced performance of thermoelectric nanocomposites based on Cu12Sb4S13 tetrahedrite. Nano Energy, 2019, 57: 835 doi: 10.1016/j.nanoen.2018.12.090
    [77] Zhao K P, Qiu P F, Song Q F, et al. Ultrahigh thermoelectric performance in Cu2−ySe0.5S0.5 liquid-like materials. Mater Today Phys, 2017, 1: 14 doi: 10.1016/j.mtphys.2017.04.003
    [78] Olvera A A, Moroz N A, Sahoo P, et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ Sci, 2017, 10(7): 1668 doi: 10.1039/C7EE01193H
    [79] Gahtori B, Bathula S, Tyagi K, et al. Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy, 2015, 13: 36 doi: 10.1016/j.nanoen.2015.02.008
    [80] Chang C, Wu M H, He D S, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science, 2018, 360(6390): 778 doi: 10.1126/science.aaq1479
    [81] Chen C L, Wang H, Chen Y Y, et al. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A, 2014, 2(29): 11171 doi: 10.1039/C4TA01643B
    [82] Zhang Q, Chere E K, Sun J Y, et al. Studies on thermoelectric properties of n-type polycrystalline SnSe1−xSx by iodine doping. Adv Energy Mater, 2015, 5(12): 1500360 doi: 10.1002/aenm.201500360
  • 加载中
图(6)
计量
  • 文章访问数:  1058
  • HTML全文浏览量:  755
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 刊出日期:  2021-02-26

目录

    /

    返回文章
    返回