粉末高温合金Udimet720Li γ′强化相析出行为

刘健 叶飞 王旭青 彭子超 罗学军

刘健, 叶飞, 王旭青, 彭子超, 罗学军. 粉末高温合金Udimet720Li γ′强化相析出行为[J]. 粉末冶金技术, 2021, 39(6): 499-504. doi: 10.19591/j.cnki.cn11-1974/tf.2021010004
引用本文: 刘健, 叶飞, 王旭青, 彭子超, 罗学军. 粉末高温合金Udimet720Li γ′强化相析出行为[J]. 粉末冶金技术, 2021, 39(6): 499-504. doi: 10.19591/j.cnki.cn11-1974/tf.2021010004
LIU Jian, YE Fei, WANG Xu-qing, PENG Zi-chao, LUO Xue-jun. Precipitation behavior of γ′ phase in P/M superalloy Udimet720Li[J]. Powder Metallurgy Technology, 2021, 39(6): 499-504. doi: 10.19591/j.cnki.cn11-1974/tf.2021010004
Citation: LIU Jian, YE Fei, WANG Xu-qing, PENG Zi-chao, LUO Xue-jun. Precipitation behavior of γ′ phase in P/M superalloy Udimet720Li[J]. Powder Metallurgy Technology, 2021, 39(6): 499-504. doi: 10.19591/j.cnki.cn11-1974/tf.2021010004

粉末高温合金Udimet720Li γ′强化相析出行为

doi: 10.19591/j.cnki.cn11-1974/tf.2021010004
基金项目: 国家科技重大专项资助项目(HT-2017-VI-0017-0089)
详细信息
    通讯作者:

    E-mail:wxqcjr@163.com

  • 中图分类号: TG316

Precipitation behavior of γ′ phase in P/M superalloy Udimet720Li

More Information
  • 摘要: 采用气淬炉模拟了粉末高温合金Udimet720Li经空冷、风冷及油冷等不同冷却路径的固溶处理过程,测试了经过两级时效处理的合金在650 ℃的拉伸性能,研究了拉伸变形后的位错组态,分析了冷却速率对γ′强化相析出规律及力学性能的影响。结果表明:粉末高温合金Udimet720Li的析出相强化机制为位错切过机制,二次γ′相尺寸越小,合金强度越高。合金二次γ′相的形核析出温度区间为900~1000 ℃,其尺寸与合金在该温度范围内的冷却速率成反比,冷却速率越大,γ′相尺寸越小,当冷速高于100 ℃/min时,合金强度达到应用要求。推荐粉末Udimet720Li合金盘件固溶处理的冷却方式为:在1000 ℃以上保持低冷却速率来降低淬火应力,然后选择油浴作为盘件淬火的冷却方式,入油温度应在1000 ℃左右。
  • 图  1  粉末高温合金Udimet720Li试样冷却曲线

    Figure  1.  Cooling curves of the P/M Udimet720Li specimens

    图  2  两级时效处理后的粉末高温合金Udimet720Li试样晶粒组织:(a)试样1;(b)试样2;(c)试样3;(d)试样4;(e)试样5

    Figure  2.  Grain structures of the P/M Udimet720Li specimens experiencing the double aging treatment: (a) specimen 1; (b) specimen 2; (c) specimen 3; (d) specimen 4; (e) specimen 5

    图  3  两级时效处理后的粉末高温合金Udimet720Li试样γ′相组织:(a)试样1;(b)试样2;(c)试样3;(d)试样4;(e)试样5

    Figure  3.  γ′ morphologies of the P/M Udimet720Li specimens experiencing the double aging treatment: (a) specimen 1; (b) specimen 2; (c) specimen 3; (d) specimen 4; (e) specimen 5

    图  4  二次γ′相平均尺寸随冷却速率的变化关系

    Figure  4.  Average size of the secondary γ′ phases with the cooling rate

    图  5  屈服强度与γ′相平均尺寸间的关系

    Figure  5.  Yield strength with the average size of the secondary γ′ phases

    图  6  粉末高温合金Udimet720Li试样1(1100 ℃→500 ℃,冷却速率30 ℃/min)拉伸变形后显微组织

    Figure  6.  TEM images of the P/M Udimet720Li alloy specimens (1100 ℃→500 ℃, cooling rate: 30 ℃/min) after tensile deformation

    图  7  粉末高温合金Udimet720Li试样1(1100 ℃→500 ℃,冷却速率30 ℃/min)拉伸变形后的位错组态

    Figure  7.  Dislocation configuration of the P/M Udimet720Li alloy specimens (1100 ℃→500 ℃, cooling rate: 30 ℃/min) after tensile deformation

    表  1  粉末高温合金Udimet720Li名义成分(质量分数)

    Table  1.   Nominal composition of the P/M Udimet720Li alloys %

    CrCoAlTiWMoZrBCNi
    16.00014.7502.5005.0001.2503.0000.0350.0200.015余量
    下载: 导出CSV

    表  2  粉末高温合金Udimet720Li试样冷却路径

    Table  2.   Cooling paths of the P/M Udimet720Li specimens

    试样编号冷却路径
    1以30 ℃/min的速率从1100 ℃冷却至500 ℃
    2以100 ℃/min的速率从1100 ℃冷却至500 ℃
    3以250 ℃/min的速率从1100 ℃冷却至500 ℃
    4以100 ℃/min的速率从1100 ℃冷却至1000 ℃,再以250 ℃/min的速率从1000 ℃冷却至500 ℃
    5以100 ℃/min的速率从1100 ℃冷却至900 ℃,再以250 ℃/min的速率从900 ℃冷却至500 ℃
    下载: 导出CSV

    表  3  两级时效处理后的粉末高温合金Udimet720Li试样γ′相尺寸及含量(体积分数)

    Table  3.   γ′ size and volume fraction of the P/M Udimet720Li specimens experiencing the double aging treatment

    试样编号二次γ′相平均尺寸 / nm二次γ′相含量,
    体积分数 / %
    1149.748
    2127.845
    387.747
    490.346
    5131.244
    下载: 导出CSV

    表  4  两级时效处理后的粉末高温合金Udimet720Li试样的650 ℃拉伸性能

    Table  4.   Tensile properties of the P/M Udimet720Li specimens experiencing the double aging treatment at 650 ℃

    试样编号Rm / MPaRp / MPaA / %Z / %
    112829803535
    2135410413034
    3137510912830
    4138210952424
    5136910372728
    注:Rm为抗拉强度;Rp为屈服强度;A为断后伸长率;Z为断面收缩率。
    下载: 导出CSV
  • [1] Aba-Perea P E, Pirling T, Withers P J, et al. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys. Mater Des, 2016, 89: 856 doi: 10.1016/j.matdes.2015.09.152
    [2] Jackson M P, Reed R C. Heat treatment of UDIMET 720Li: the effect of microstructure on properties. Mater Sci Eng A, 1999, 259(1): 85 doi: 10.1016/S0921-5093(98)00867-3
    [3] Zou J W, Wang W X. Development and application of P/M superalloy. J Aeronaut Mater, 2006(3): 244 doi: 10.3969/j.issn.1005-5053.2006.03.051

    邹金文, 汪武祥. 粉末高温合金研究进展与应用. 航空材料学报, 2006(3): 244 doi: 10.3969/j.issn.1005-5053.2006.03.051
    [4] Wang X F, Yang J, Zou J W, et al. Study on oxide inclusions of nickel-based P/M superalloy FHG96 by computed tomography technology. Powder Metall Technol, 2019, 37(4): 264

    王晓峰, 杨杰, 邹金文, 等. FGH96镍基粉末高温合金氧化物夹杂的计算机断层扫描研究. 粉末冶金技术, 2019, 37(4): 264
    [5] Tian G F, Chen Y, Wang Y. Research on microstructure characterization in residual dendrite zones of FGH96 alloy with gradient microstructure. Powder Metall Technol, 2018, 36(6): 403

    田高峰, 陈阳, 汪煜. 梯度组织FGH96合金残留枝晶区的组织特征研究. 粉末冶金技术, 2018, 36(6): 403
    [6] Zhou X M, Feng Y F, Zeng W H, et al. Effect of aging treatment on the behavior of room temperature tensile of P/M superalloys used for inertia friction welding joints. Powder Metall Technol, 2021, 39(1): 41

    周晓明, 冯业飞, 曾维虎, 等. 时效处理对粉末高温合金惯性摩擦焊接头室温拉伸行为的影响. 粉末冶金技术, 2021, 39(1): 41
    [7] Goff S D L, Couturier R, Guétaz L, et al. Effect of the microstructure on the creep behavior of PM Udimet 720 superalloy—experiments and modeling. Mater Sci Eng A, 2004, 387-389: 599 doi: 10.1016/j.msea.2004.01.094
    [8] Luo J, Bowen P. Statistical aspects of fatigue behaviour in a PM Ni-base superalloy Udimet 720. Acta Mater, 2003, 51(12): 3521 doi: 10.1016/S1359-6454(03)00171-X
    [9] Jiang R, Song Y D, Reed P A. Fatigue crack growth mechanisms in powder metallurgy Ni-based superalloys—A review. Int J Fatigue, 2020, 141: 105887 doi: 10.1016/j.ijfatigue.2020.105887
    [10] Luo J, Bowen P. Small and long fatigue crack growth behaviour of a PM Ni-based superalloy, Udimet 720. Int J Fatigue, 2004, 26(2): 113 doi: 10.1016/S0142-1123(03)00139-7
    [11] Goto M, Knowles D M. Initiation and propagation behaviour of microcracks in Ni-base superalloy Udimet 720 Li. Eng Fract Mech, 1998, 60(1): 1 doi: 10.1016/S0013-7944(98)00003-4
    [12] Deng W K, Zhang D, Wu H Y, et al. Prediction of yield strength in a polycrystalline nickel base superalloy during interrupt cooling. Scr Mater, 2020, 183: 139 doi: 10.1016/j.scriptamat.2020.03.034
    [13] Li J, Zhao Z Y, Bai P K, et al. Microstructural evolution and mechanical properties of IN718 alloy fabricated by selective laser melting following different heat treatments. J Alloys Compd, 2019, 772: 861 doi: 10.1016/j.jallcom.2018.09.200
    [14] Li M, Coakley J, Isheim D, et al. Influence of the initial cooling rate from γ′ supersolvus temperatures on microstructure and phase compositions in a nickel superalloy. J Alloys Compd, 2018, 732: 765 doi: 10.1016/j.jallcom.2017.10.263
    [15] He D G, Lin Y C, Tang Y, et al. Influences of solution cooling on microstructures, mechanical properties and hot corrosion resistance of a nickel-based superalloy. Mater Sci Eng A, 2019, 746: 372 doi: 10.1016/j.msea.2019.01.015
    [16] Zhang L, Tian S G. Effect of long-term aging on γ′ phase and lattice constant of FGH95 P/M Ni-based superalloy. Powder Metall Technol, 2019, 37(3): 191

    张磊, 田素贵. 长期时效对FGH95镍基粉末高温合金γ'相及晶格常数的影响. 粉末冶金技术, 2019, 37(3): 191
    [17] Yu Q Y, Dong J X, Zhang M C, et al. Thermodynamic calculation on equilibrium precipitated phases in GH720Li superalloy. Rare Met Mater Eng, 2010, 39(5): 857

    于秋颖, 董建新, 张麦仓, 等. 难变形高温合金GH720Li平衡析出相的热力学计算. 稀有金属材料与工程, 2010, 39(5): 857
    [18] Kuo Y L, Horikawa S, Kakehi K. The effect of interdendritic δ phase on the mechanical properties of alloy 718 built up by additive manufacturing. Mater Des, 2017, 116: 411 doi: 10.1016/j.matdes.2016.12.026
    [19] Shin K Y, Kim J H, Terner M, et al. Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy. Mater Sci Eng A, 2019, 751: 311 doi: 10.1016/j.msea.2019.02.054
    [20] Peng Z C, Tian G F, Jiang J, et al. Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy. Mater Sci Eng A, 2016, 676: 441 doi: 10.1016/j.msea.2016.08.101
    [21] Reed R. The Superalloys: Fundamentals and Applications. London: Cambridge University Press, 2006
    [22] Liu J, Peng Q, Xie J X. Grain structure and metallurgical defects regulation of selective laser melted René 88DT superalloy. Acta Metall Sinica, 2021, 57(2): 191

    刘健, 彭钦, 谢建新. 选区激光熔化René88DT高温合金的晶粒组织及冶金缺陷调控. 金属学报, 2021, 57(2): 191
    [23] Luo X J, Wang X F, Ma G J, et al. Effect of heat treatment on microstructure and properties of FGH95 alloy. Powder Metall Technol, 2012, 30(1): 12 doi: 10.3969/j.issn.1001-3784.2012.01.003

    罗学军, 王晓峰, 马国军, 等. 热处理对FGH95合金组织和性能的影响研究. 粉末冶金技术, 2012, 30(1): 12 doi: 10.3969/j.issn.1001-3784.2012.01.003
    [24] Zhong Z Y, Liu J T, Zhang Y W, et al. Effect of solution and aging temperature on microstructure and properties of a new powder superalloy. Powder Metall Ind, 2021, 31(1): 56

    钟治勇, 刘建涛, 张义文, 等. 固溶与时效温度对新型粉末高温合金组织和性能的影响. 粉末冶金工业, 2021, 31(1): 56
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  872
  • HTML全文浏览量:  279
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 刊出日期:  2021-12-10

目录

    /

    返回文章
    返回