纯钼的多向锻造数值模拟及实验研究

杨栋林 段柏华 王德志

杨栋林, 段柏华, 王德志. 纯钼的多向锻造数值模拟及实验研究[J]. 粉末冶金技术, 2021, 39(3): 216-222. doi: 10.19591/j.cnki.cn11-1974/tf.2021030010
引用本文: 杨栋林, 段柏华, 王德志. 纯钼的多向锻造数值模拟及实验研究[J]. 粉末冶金技术, 2021, 39(3): 216-222. doi: 10.19591/j.cnki.cn11-1974/tf.2021030010
YANG Dong-lin, DUAN Bo-hua, WANG De-zhi. Numerical simulation and experimental investigation on multi-directional forging of pure molybdenum[J]. Powder Metallurgy Technology, 2021, 39(3): 216-222. doi: 10.19591/j.cnki.cn11-1974/tf.2021030010
Citation: YANG Dong-lin, DUAN Bo-hua, WANG De-zhi. Numerical simulation and experimental investigation on multi-directional forging of pure molybdenum[J]. Powder Metallurgy Technology, 2021, 39(3): 216-222. doi: 10.19591/j.cnki.cn11-1974/tf.2021030010

纯钼的多向锻造数值模拟及实验研究

doi: 10.19591/j.cnki.cn11-1974/tf.2021030010
基金项目: 国家重点研发计划专项资助项目(2017YFB0305600);中南大学中央高校基本科研业务费专项资金资助项目(2020zzts437)
详细信息
    通讯作者:

    E-mail:duan-bh@csu.edu.cn

  • 中图分类号: TG316

Numerical simulation and experimental investigation on multi-directional forging of pure molybdenum

More Information
  • 摘要: 采用DEFORM–3D有限元模拟软件对纯钼坯体多向锻造大塑性变形过程进行数值模拟,结合锻造实验,研究了变形温度、锻造压下量及锻造工步等对锻件等效应变及其均匀性分布的影响,优选出了反复拔长–镦粗的锻造工艺。研究发现,随着锻造的进行,等效应变分布趋于均匀,在第三次拔长过后,锻件心部等效应变值可达到3.75以上,锻件整体相对密度接近于100%。初始平均晶粒尺寸约55 μm的纯钼烧结坯经多向锻造后,烧结孔洞明显减少,相对密度增加,晶粒尺寸减小至2~3 μm。
  • 图  1  拔长弧形砧模具设计图:(a)3D;(b)2D

    Figure  1.  Mold design of the arc-shaped anvil for drawing: (a) 3D; (b) 2D

    图  2  不同单锤压下量条件下进行6锤次锻打后等效应变:(a)12 mm;(b)17 mm;(c)23 mm;(d)28 mm

    Figure  2.  Equivalent strain after forging for six times in the different single hammer reduction: (a) 12 mm; (b) 17 mm; (c) 23 mm; (d) 28 mm

    图  3  不同单锤压下量的锻件中心区域横截面径向等效应变分布

    Figure  3.  Radial equivalent strain distribution of forging in the cross section of central zone by the different single hammer reduction

    图  4  不同变形温度锻造后等效应变分布:(a)1100 ℃;(b)1200 ℃;(c)1300 ℃;(d)1400 ℃

    Figure  4.  Equivalent strain distribution after forging at different deformation temperatures: (a) 1100 ℃; (b) 1200 ℃; (c) 1300 ℃; (d) 1400 ℃

    图  5  多向锻造后圆柱型纯钼坯体形状变化:(a)烧结坯;(b)一次拔长;(c)一次镦粗;(d)二次拔长;(e)二次镦粗;(f)三次拔长

    Figure  5.  Shape change of the cylindrical pure molybdenum body after the multi-directional forging: (a) sintering body; (b) first step, drawing; (c) second step, upsetting; (d) third step, drawing; (e) fourth step, upsetting; (f) fifth step, drawing

    图  6  多向锻造后锻件轴切面等效应变分布:(a)一次拔长;(b)一次镦粗;(c)二次拔长;(d)二次镦粗;(e)三次拔长

    Figure  6.  Equivalent strain distribution of forging in the axial section after the multi-directional forging: (a) first step, drawing; (b) second step, upsetting; (c) third step, drawing; (d) fourth step, upsetting; (e) fifth step, drawing

    图  7  变形均匀性系数和平均等效应变在锻造过程中的变化

    Figure  7.  Variation of the uniformity coefficient and the average equivalent strain during forging

    图  8  多向锻造过程中纯钼的相对密度分布:(a)一次拔长;(b)一次镦粗;(c)二次拔长;(d)二次镦粗;(e)三次拔长

    Figure  8.  Relative density distribution of pure molybdenum in multi-directional forging process: (a) first step, drawing; (b) second step, upsetting; (c) third step, drawing; (d) fourth step, upsetting; (e) fifth step, drawing

    图  9  多向锻造变形过程中各工步纵截面显微组织:(a)烧结坯;(b)一次拔长;(c)一次镦粗;(d)二次拔长;(e)二次镦粗;(f)三次拔长

    Figure  9.  Longitudinal section microstructure of forging in the multi-directional forging and deformation: (a) sintering body; (b) first step, drawing; (c) second step, upsetting; (d) third step, drawing; (e) fourth step, upsetting; (f) fifth step, drawing

    表  1  纯钼坯材料参数[16]

    Table  1.   Material parameters of pure Mo[16]

    类别参数
    塑流应力方程$\dot{\bar{\varepsilon}} $=6.19×108[sinh(0.0038σ)]7.7175
    exp[−282479/(RT)]
    热膨胀系数5×10−6 K‒1
    杨氏模量2.79×1011 MPa
    泊松比0.324
    导热系数98.8 W·m−1·K−1
    塑性功至热变换率0.9
    密度10.2 g·cm−3
    初始相对密度0.95
    下载: 导出CSV

    表  2  多向锻造过程各工步试样的变形参数

    Table  2.   Deformation parameters of the multi-directional forging process in each step

    工步数变形方向变形温度 / ℃变形量 / %
    1一次拔长130056
    2一次镦粗110070
    3二次拔长110050
    4二次镦粗110070
    5三次拔长110050
    下载: 导出CSV
  • [1] Chen Y F, Xie J P, Wang A Q, et al. Research status and development trend of molybdenum and molybdenum alloy sputtering target materials. Powder Metall Technol, 2018, 36(5): 393

    陈艳芳, 谢敬佩, 王爱琴, 等. 钼及钼合金溅射靶材的研究现状与发展趋势. 粉末冶金技术, 2018, 36(5): 393
    [2] Wang C Y, Teng Y K, Dong D, et al. Study on recrystallization behavior of Mo‒30W molybdenum alloy. Powder Metall Technol, 2018, 36(6): 418

    王承阳, 滕宇阔, 董帝, 等. Mo–30W钼合金棒材再结晶行为研究. 粉末冶金技术, 2018, 36(6): 418
    [3] Xing H R, Hu P, Zhou Y H, et al. The microstructure and texture evolution of pure molybdenum sheets under various rolling reductions. Mater Charact, 2020, 165: 110357 doi: 10.1016/j.matchar.2020.110357
    [4] Wang T J, Zhang L G, Che H Y, et al. Research progress on HIP diffusion bonding of molybdenum alloys. Powder Metall Ind, 2020, 30(6): 80

    王铁军, 张龙戈, 车洪艳, 等. 钼合金热等静压扩散连接技术研究进展. 粉末冶金工业, 2020, 30(6): 80
    [5] Wu Z, Li J, Liu X H, et al. Analysis on hot research of domestic molybdenum field. China Molybdenum Ind, 2019, 43(3): 1

    武洲, 李晶, 刘晓辉, 等. 国内钼行业研究热点分析. 中国钼业, 2019, 43(3): 1
    [6] Xia Y, Wang K S, Hu P, et al. Research progress on plastic deformation behavior of pure molybdenum metal. Mater Rep, 2019, 33(10): 3277

    夏雨, 王快社, 胡平, 等. 纯钼金属高温塑性变形行为研究进展. 材料导报, 2019, 33(10): 3277
    [7] Zhao H. Research and development on the sintering techniques of molybdenum and molybdenum alloys. Powder Metall Technol, 2019, 37(5): 382

    赵虎. 钼及钼合金烧结技术研究及发展. 粉末冶金技术, 2019, 37(5): 382
    [8] Kolobov Y R, Kieback B, Ivanov K V, et al. The structure and microhardness evolution in submicrocrystalline molybdenum processed by severe plastic deformation followed by annealing. Int J Refract Met Hard Mater, 2003, 21(1-2): 69 doi: 10.1016/S0263-4368(03)00002-7
    [9] Li P, Lin Q, Nie A Q, et al. Microstructure, performance and thermal stability of pure molybdenum by HPT method under different pressure. Rare Met Mater Eng, 2019, 48(2): 673

    李萍, 林泉, 聂爱琴, 等. HPT不同压力下纯钼的组织和性能及热稳定性. 稀有金属材料与工程, 2019, 48(2): 673
    [10] Wang X, Li P, Xue K M. DEM and microstructure analysis of pure molybdenum powder material during equal channel angular pressing. Key Eng Mater, 2017, 732: 11 doi: 10.4028/www.scientific.net/KEM.732.11
    [11] Ren R. Study on molybdenum slabs rolling process optimization. China Molybdenum Ind, 2010, 34(3): 46 doi: 10.3969/j.issn.1006-2602.2010.03.010

    任茹. 钼板坯轧制工艺优化研究. 中国钼业, 2010, 34(3): 46 doi: 10.3969/j.issn.1006-2602.2010.03.010
    [12] Zhu Q F, Zhang Y, Zhu C, et al. Numerical simulation and experimental investigation on multi-direction forging behaviors of high purity aluminum. J Mater Eng, 2017, 45(4): 15 doi: 10.11868/j.issn.1001-4381.2015.000401

    朱庆丰, 张扬, 朱成, 等. 高纯铝多向锻造大塑性变形过程的数值模拟及实验研究. 材料工程, 2017, 45(4): 15 doi: 10.11868/j.issn.1001-4381.2015.000401
    [13] Nie K B, Deng K K, Wang X J, et al. Influence of SiC nanoparticles addition on the microstructural evolution and mechanical properties of AZ91 alloy during isothermal multidirectional forging. Mater Charact, 2017, 124: 14 doi: 10.1016/j.matchar.2016.12.006
    [14] Liu D L. Study of Microstructure and Mechanical Properties of 2A14 Aluminum Alloy During Multi-Directional Forging [Dissertation]. Changsha: Central South University, 2014

    刘东亮. 多向锻造2A14铝合金组织与力学性能研究[学位论文]. 长沙: 中南大学, 2014
    [15] Zherebtsov S V, Salishchev G A, Galeyev R M, et al. Production of submicrocrystalline structure in large-scale Ti–6Al–4V billet by warm severe deformation processing. Scr Mater, 2004(51): 1147
    [16] Yang Y H, Lai F L, Zheng A L, et al. Research on failure mechanisms of radial forging of Mo bars. J Plastic Eng, 2020, 27(4): 27 doi: 10.3969/j.issn.1007-2012.2020.04.004

    杨益航, 赖飞龙, 郑艾龙, 等. 钼棒材径向锻的失效机制研究. 塑性工程学报, 2020, 27(4): 27 doi: 10.3969/j.issn.1007-2012.2020.04.004
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  806
  • HTML全文浏览量:  182
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回