界面热失配对金属基复合材料力学性能的影响

侯雅男 杨昆明 刘悦 范同祥

侯雅男, 杨昆明, 刘悦, 范同祥. 界面热失配对金属基复合材料力学性能的影响[J]. 粉末冶金技术, 2023, 41(6): 490-499, 507. doi: 10.19591/j.cnki.cn11-1974/tf.2021030033
引用本文: 侯雅男, 杨昆明, 刘悦, 范同祥. 界面热失配对金属基复合材料力学性能的影响[J]. 粉末冶金技术, 2023, 41(6): 490-499, 507. doi: 10.19591/j.cnki.cn11-1974/tf.2021030033
HOU Yanan, YANG Kunming, LIU Yue, FAN Tongxiang. Effect of interfacial thermal mismatch on mechanical properties of metal matrix composites[J]. Powder Metallurgy Technology, 2023, 41(6): 490-499, 507. doi: 10.19591/j.cnki.cn11-1974/tf.2021030033
Citation: HOU Yanan, YANG Kunming, LIU Yue, FAN Tongxiang. Effect of interfacial thermal mismatch on mechanical properties of metal matrix composites[J]. Powder Metallurgy Technology, 2023, 41(6): 490-499, 507. doi: 10.19591/j.cnki.cn11-1974/tf.2021030033

界面热失配对金属基复合材料力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021030033
基金项目: 特殊领域基础加强项目(GFJQ 2126-007);国家自然科学基金资助项目(51901129)
详细信息
    通讯作者:

    E-mail: yliu23@sjtu.edu.cn

  • 中图分类号: TG142.71; TF121

Effect of interfacial thermal mismatch on mechanical properties of metal matrix composites

More Information
  • 摘要: 由于金属基体和增强相的热膨胀系数存在差异,金属基复合材料在制备降温过程中不可避免地产生热失配应力。研究表明,金属基复合材料热失配应力在近界面处以不同类型金属缺陷的形式进行释放,在远离界面处以热残余应力的形式保留。热失配应力释放的缺陷类型、尺寸、密度以及热残余应力的存在均会显著影响金属基复合材料的力学性能。本文阐述了界面热失配缺陷和热残余应力的产生,详细分析了界面热失配对金属基复合材料力学性能的影响,为进一步实现金属基复合材料的界面结构设计和优化提供理论基础和科学依据。
  • 图  1  金属基复合材料界面热失配示意图

    Figure  1.  Schematic diagram of the interfacial thermal mismatch for MMCs

    图  2  SiC(颗粒)/Al和碳化钛(TiC)颗粒/Al复合材料界面处的热失配位错随远离界面距离的变化规律[24]

    Figure  2.  Interfacial thermal mismatch dislocations with the distance away from the interface of the SiC particles (SiCp)/Al and TiC particles (TiCp)/Al composites[24]

    图  3  棱柱位错冲出模型[27](a)和考虑球状颗粒的位错冲出模型示意图[28](b)

    Figure  3.  Schematic diagram of the prismatic dislocation punching model[27] (a) and the dislocation punching model considering the spherical particle reinforcements[28] (b)

    图  4  SiC/Al复合材料透射电子显微形貌:(a)SiC(颗粒)/Al复合材料线形和锯齿状缺陷[20];(b)SiC(颗粒)/Al复合材料界面处线形缺陷[20];(c)SiC(纳米晶须,20%)/Al复合材料透射电子显微形貌[30];(d)SiC(纳米晶须,25%)/Al复合材料透射电子显微形貌[30];(e)SiC(纳米晶须,30%)/Al复合材料单孪晶[30];(f)SiC(纳米晶须,30%)/Al复合材料双重孪晶[30]

    Figure  4.  TEM images of the SiC/Al composites: (a) linear and zigzag shape defects in the SiCp/Al composites[20]; (b) linear morphology defects at the SiCp/Al interface[20]; (c) SiCnw/Al (20%) composites[30]; (d) SiCnw/Al (25%) composites[30]; (e) single twins in the SiCnw/Al (30%) composites[30]; (f) twofold twins in the SiCnw/Al (30%) composites[30]

    图  5  纳米SiC(颗粒)/Al复合材料中SiC体积分数对强化机制的影响[41]

    Figure  5.  Effect of SiC volume fraction on the strengthening mechanisms of the SiCp/Al nanocomposites[41]

    图  6  SiC(颗粒)/Al复合材料有限元模型与实验结果[4547]:(a)有限元模型中基体颗粒及塑性区分布;(b)轴对称单颗粒模型中区域分布;(c)15%SiC(颗粒,体积分数)/A356复合材料应力‒应变模拟和实验结果

    Figure  6.  Finite element method and the corresponding experimental results of the SiCp/Al composites[4547]: (a) particle distribution and plastic zone in the matrix in FEM; (b) plastic zone distribution in the axisymmetric single particle model; (c) the stress‒strain simulation and experimental results of the SiCp/Al composites

    图  7  1.0% CNTs/Al复合材料透射电镜显微形貌(a)及CNTs/Al复合材料和纯Al的拉伸性能曲线(b)[52]

    Figure  7.  TEM image of the 1.0% CNTs/Al composites (a) and the tensile curves of CNTs/Al composites and pure Al (b)[52]

    图  8  热残余应力对金属基复合材料力学性能的影响:(a)20% SiC(颗粒)/A356复合材料应力‒应变曲线[59];(b)理论模型预测15% SiC(颗粒)/A356复合材料拉伸应力应变曲线[14];(c)有无残余应力情况下的屈服面[61];(d)残余热应力对Al2O3(颗粒)/AA6061复合材料低周疲劳裂纹扩展寿命的影响[65]

    Figure  8.  Effect of the thermal residual stress on the mechanical properties of the metal matrix composites: (a) stress-strain curves of 20% SiCp/A356 composites[59]; (b) tensile stress-strain curves of 15% SiCp/A356 composites predicted by theoretical model[14]; (c) initial yield surface with and without residual stress[61]; (d) influence of residual thermal stress on the low cycle fatigue crack growth life of Al2O3/AA6061 composites[65]

    表  1  SiC颗粒尺寸和质量分数对SiC/Al复合材料热失配缺陷类型的影响[2022,3335]

    Table  1.   Effects of SiC particle size and mass fraction on the interfacial thermal mismatch defects of SiC/Al composites[2022,3335]

    SiC颗粒尺寸 / nm SiC质量分数 / % 热失配缺陷类型
    40 0.5 位错[22]
    40 1.5 位错[22]
    100 10.0 位错[21]
    100 15.0 位错[21]
    100 20.0 位错[21]
    280 25.0 位错[33]
    400 20.0 位错[34]
    500 20.0 位错[35]
    100 30.0 孪晶[20]
    150 30.0 孪晶[20]
    下载: 导出CSV
  • [1] Zhang X, Xu Y, Wang M, et al. A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix composites. Nat Commun, 2020, 11(1): 2775 doi: 10.1038/s41467-020-16490-4
    [2] Zhang X, Zhao N, He C. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design–a review. Prog Mater Sci, 2020, 113: 100672 doi: 10.1016/j.pmatsci.2020.100672
    [3] Guo B S, Zhang X M, Cen X, et al. Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes. Carbon, 2018, 139: 459 doi: 10.1016/j.carbon.2018.07.026
    [4] Chang G, Sun F Y, Duan J L, et al. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond. Acta Mater, 2018, 160: 235 doi: 10.1016/j.actamat.2018.09.004
    [5] Yang K M, Ma Y C, Zhang Z Y, et al. Anisotropic thermal conductivity and associated heat transport mechanism in roll-to-roll graphene reinforced copper matrix composites. Acta Mater, 2020, 197: 342 doi: 10.1016/j.actamat.2020.07.021
    [6] Lin J X, Ran G, Lei P H, et al. Microstructure analysis of neutron absorber Al/B4C metal matrix composites. Metals, 2017, 7(12): 567 doi: 10.3390/met7120567
    [7] Fan T X, Liu Y, Yang K M, et al. Recent progress on interfacial structure optimization and their influencing mechanism of carbon reinforced metal matrix composites. Acta Metall Sinica, 2019, 55(1): 16

    范同祥, 刘悦, 杨昆明, 等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展. 金属学报, 2019, 55(1): 16
    [8] Qiu F, Tong H T, Shen P, et al. Overview: SiC/Al interface reaction and interface structure evolution mechanism. Acta Metall Sinica, 2019, 55(1): 87 doi: 10.11900/0412.1961.2018.00292

    邱丰, 佟昊天, 沈平, 等. 综述: SiC/Al界面反应与界面结构演变规律及机制. 金属学报, 2019, 55(1): 87 doi: 10.11900/0412.1961.2018.00292
    [9] Chu K, Liu Y P, Wang J, et al. Oxygen plasma treatment for improving graphene distribution and mechanical properties of graphene/copper composites. Mater Sci Eng A, 2018, 735: 398 doi: 10.1016/j.msea.2018.08.064
    [10] Yang M, Weng L, Zhu H X, et al. Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons. Carbon, 2017, 118: 250 doi: 10.1016/j.carbon.2017.03.055
    [11] Lin K, Dai P S. The influence of thermal residual stresses and thermal generated dislocation on the mechanical response of particulate-reinforced metal matrix nanocomposites. Composites Part B, 2015, 83: 105 doi: 10.1016/j.compositesb.2015.08.008
    [12] Schöbel M, Baumgartner G, Gerth S, et al. Microstresses and crack formation in AlSi7MgCu and AlSi17Cu4 alloys for engine components. Acta Mater, 2014, 81: 401 doi: 10.1016/j.actamat.2014.07.052
    [13] Wang Z, Li C, Wang H, et al. Aging behavior of nano-SiC/2014Al composite fabricated by powder metallurgy and hot extrusion techniques. J Mater Sci Technol, 2016, 32(10): 1008 doi: 10.1016/j.jmst.2016.07.011
    [14] Cao D, Duan Q, Li S, et al. Effects of thermal residual stresses and thermal-induced geometrically necessary dislocations on size-dependent strengthening of particle-reinforced MMCs. Compos Struct, 2018, 200: 290 doi: 10.1016/j.compstruct.2018.05.129
    [15] Cai X L, Xu Z W, Hu C, et al. The preparation methods and research progress of carbon nanotubes reinforced copper matrix composites. Powder Metall Technol, 2015, 33(5): 370 doi: 10.3969/j.issn.1001-3784.2015.05.011

    蔡晓兰, 许忠文, 胡翠, 等. 碳纳米管增强铜基复合材料的制备方法及研究进展. 粉末冶金技术, 2015, 33(5): 370 doi: 10.3969/j.issn.1001-3784.2015.05.011
    [16] Sun Z B, Tian Z R, Weng L, et al. The effect of thermal mismatch on the thermal conductance of Al/SiC and Cu/diamond composites. J Appl Phys, 2020, 127(4): 045101 doi: 10.1063/1.5133982
    [17] Khodabakhshi F, Simchi A. The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al‒SiC‒Al2O3 nanocomposites. Mater Des, 2017, 130: 26 doi: 10.1016/j.matdes.2017.05.047
    [18] Zhang J F, Andar H, Zhang X X, et al. An enhanced finite element model considering multi strengthening and damage mechanisms in particle reinforced metal matrix composites. Compos Struct, 2019, 226: 111281 doi: 10.1016/j.compstruct.2019.111281
    [19] Wong C S, Pramanik A, Basak A K. Residual stress generation in metal matrix composites after cooling. Mater Sci Technol, 2018, 34(11): 1388 doi: 10.1080/02670836.2018.1458460
    [20] Yang W, Dong R, Jiang L, et al. Unstable stacking faults in submicron/micron Al grammins in multi-SiCp/multi-Al nanocomposite. Vacuum, 2015, 122(2): 1
    [21] Yang W, Dong R, Yu Z, et al. Strengthening behavior in high content SiC nanowires reinforced Al composite. Mater Sci Eng A, 2015, 648(11): 41
    [22] Zhang L J, Qiu F, Wang J G, et al. Nano-SiCp/Al2014 composites with high strength and good ductility. Sci Eng Compos Mater, 2017, 24(3): 353 doi: 10.1515/secm-2014-0468
    [23] Vogelsang M, Arsensult R J, Fisher R M. An in situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composites. Metall Trans A, 1986, 17(3): 379 doi: 10.1007/BF02643944
    [24] Kim C T, Lee J K, Plichta M R. Plastic relaxation of thermoelastic stress in aluminum/ceramic composites. Metall Trans A, 1990, 21(2): 673 doi: 10.1007/BF02671938
    [25] Dunand D C, Mortensen A. On plastic relaxation of thermal stresses in reinforced metals. Acta Metall Mater, 1991, 39(2): 127 doi: 10.1016/0956-7151(91)90261-X
    [26] Chawla K K, Metzger M. Initial dislocation distributions in tungsten fibre-copper composites. J Mater Sci, 1972, 7(1): 34 doi: 10.1007/BF00549547
    [27] Arsenault R J, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion. Mater Sci Eng, 1986, 81(1-2): 175
    [28] Taya M, Lulay K E, Lloyd D J. Strengthening of a particulate metal matrix composite by quenching. Acta Metall Mater, 1991, 39(1): 73 doi: 10.1016/0956-7151(91)90329-Y
    [29] Shibata S, Taya M, Mori T, et al. Dislocation punching from spherical inclusions in a metal matrix composite. Acta Metall Mater, 1992, 40(11): 3141 doi: 10.1016/0956-7151(92)90477-V
    [30] Dong R H. Formation Mechanism of Stacking Faults and Twins Induced by SiC Nanowires in Al Matrix and Its Effect on Mechanical Behavior [Dissertation]. Harbin: Harbin Institute of Technology, 2016

    董蓉桦. SiC纳米线诱发Al基体层错和孪晶的形成机制及其对力学行为的影响[学位论文]. 哈尔滨: 哈尔滨工业大学, 2016
    [31] Ahmed S I, Mkhoyan K A, Youssef K M. The activation of deformation mechanisms for improved tensile properties in nanocrystalline aluminum. Mater Sci Eng A, 2020, 777: 139069 doi: 10.1016/j.msea.2020.139069
    [32] Wang L, Guan P, Teng J, et al. New twinning route in face-centered cubic nanocrystalline metals. Nat Commun, 2017, 8(1): 2142 doi: 10.1038/s41467-017-02393-4
    [33] Redsten A M, Klier E M, BrownA M, et al. Mechanical properties and microstructure of cast oxide-dispersion-strengthened aluminum. Mater Sci Eng A, 1995, 201(1-2): 88 doi: 10.1016/0921-5093(94)09741-0
    [34] Zhang X N, Geng L, Xu B. Compressive behaviour of Al-based hybrid composites reinforced with SiC whiskers and SiC nanoparticles. Mater Chem Phys, 2007, 101(1): 242 doi: 10.1016/j.matchemphys.2006.04.004
    [35] Xu Y B, Tanaka Y, Murata M, et al. Thermal conductivity of unidirectionally aligned SiC whisker reinforced Al alloy matrix composite with interfacial thermal resistance. Mater Trans, 2005, 46(2): 148 doi: 10.2320/matertrans.46.148
    [36] Liang J M, Wang L M, He W, et al. Effect of milling time on microstructures and hardness of nanocaystalline Al‒7Si‒0.3Mg alloy powders. Powder Metall Technol, 2019, 37(5): 373

    梁加淼, 王利民, 何卫, 等. 球磨时间对纳米晶Al‒7Si‒0. 3Mg合金粉末微观组织及硬度的影响. 粉末冶金技术, 2019, 37(5): 373
    [37] Ren F Y, Xu L, Li C Y, et al. Research progress in the preparation of particle-reinforced magnesium matrix composites by powder matallurgy. Powder Metall Technol, 2020, 38(1): 66

    任峰岩, 许磊, 历长云, 等. 粉末冶金法制备颗粒增强镁基复合材料的研究进展. 粉末冶金技术, 2020, 38(1): 66
    [38] Cheng B W, Bao R, Yi J H, et al. Interfacial modification of Cu and Al matrix composites reinforced by carbon nanotubes. Powder Metall Technol, 2017, 35(5): 384

    程博文, 鲍瑞, 易健宏, 等. 碳纳米管增强Cu基和Al基复合材料界面改性. 粉末冶金技术, 2017, 35(5): 384
    [39] Dong S H, Zhou J Q, Hui D, et al. Size dependent strengthening mechanisms in carbon nanotube reinforced metal matrix composites. Compos Part A, 2015, 68: 356 doi: 10.1016/j.compositesa.2014.10.018
    [40] Kouzeli M, Mortensen A. Size dependent strengthening in particle reinforced aluminium. Acta Mater, 2002, 50(1): 39 doi: 10.1016/S1359-6454(01)00327-5
    [41] Li B L. Sythesis, Microstructure and Properities of Nano-SiCp/Al Composites [Dissertation]. Harbin: Harbin Institute of Technology, 2013

    李斌玲. 纳米SiCp/超细Al复合材料的制备及组织性能研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2013
    [42] Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Mater Sci Eng A, 2012, 531: 112 doi: 10.1016/j.msea.2011.10.043
    [43] Song J Y, Guo Q, Ouyang Q B, et al. Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al‒Zn‒Mg‒Cu composites. Mater Sci Eng A, 2015, 644: 79 doi: 10.1016/j.msea.2015.07.050
    [44] Tu K, Yan K, Ji S, et al. Effects of solution treatment on microstructure and mechanical properties of Al2O3/7075 compostes. Spec Cast Nonferrous Alloys, 2019, 39(12): 1357

    涂凯, 闫洪, 吉顺, 等. 固溶处理对Al2O3/7075复合材料的组织及力学性能的影响. 特种铸造及有色合金, 2019, 39(12): 1357
    [45] Suh Y S, Song S, Park M S. Length-scale-dependent strengthening of particle-reinforced metal matrix composites with strain gradient plasticity. J Mech Sci Technol, 2013, 27(4): 1071 doi: 10.1007/s12206-013-0303-8
    [46] Shao J C, Xiao B L, Wang Q Z, et al. An enhanced FEM model for particle size dependent flow strengthening and interface damage in particle reinforced metal matrix composites. Compos Sci Technol, 2011, 71(1): 39 doi: 10.1016/j.compscitech.2010.09.014
    [47] Weng L. Numerical Analysis about Effects of Microstructure on Mechanical Properities of Partical Reinforced Composites [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2015

    翁琳. 基于微观结构的颗粒增强复合材料力学性能数值分析[学位论文]. 上海: 上海交通大学, 2015
    [48] Guo Y, Huang Y, Gao H, et al. Taylor-based nonlocal theory of plasticity: numerical studies of the micro-indentation experiments and crack tip fields. Int J Solids Struct, 2001, 38(42): 7447
    [49] Jang D, Li X, Gao H, et al. Deformation mechanisms in nanotwinned metal nanopillars. Nat Nanotechnol, 2012, 7(9): 594 doi: 10.1038/nnano.2012.116
    [50] Lu L, You Z, Lu K. Work hardening of polycrystalline Cu with nanoscale twins. Scr Mater, 2012, 66(11): 837 doi: 10.1016/j.scriptamat.2011.12.046
    [51] Zhao X, Lu C, Tieu A K, et al. Strengthening mechanisms and dislocation processes in textured nanotwinned copper. Mater Sci Eng A, 2016, 676: 474 doi: 10.1016/j.msea.2016.08.127
    [52] Guo B, Song M, Zhang X, et al. Exploiting the synergic strengthening effects of stacking faults in carbon nanotubes reinforced aluminum matrix composites for enhanced mechanical properties. Composites Part B, 2021, 211: 108646 doi: 10.1016/j.compositesb.2021.108646
    [53] Li M, Zhang Z, Gao H, et al. Formation of multilayer interfaces and the load transfer in graphene nanoplatelets reinforced Al matrix composites. Mater Charact, 2020, 159: 110018 doi: 10.1016/j.matchar.2019.110018
    [54] Li M, Gao H, Liang J, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Mater Charact, 2018, 140: 172 doi: 10.1016/j.matchar.2018.04.007
    [55] Zhang X, Misra A. Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scr Mater, 2012, 66(11): 860 doi: 10.1016/j.scriptamat.2012.01.026
    [56] Bezares J, Jiao S, Liu Y, et al. Indentation of nanotwinned fcc metals: Implications for nanotwin stability. Acta Mater, 2012, 60(11): 4623 doi: 10.1016/j.actamat.2012.03.020
    [57] Hodge A M, Furnish T A, Shute C J, et al. Twin stability in highly nanotwinned Cu under compression, torsion and tension. Scr Mater, 2012, 66(11): 872 doi: 10.1016/j.scriptamat.2012.01.027
    [58] Xu W J. Study on Fatigue Crack of Blunting of Nano-Twin Materials [Dissertation]. Wuhan: Wuhan Institute of Technology, 2018

    徐文进. 纳米孪晶材料疲劳裂纹钝化研究[学位论文]. 武汉: 武汉工程大学, 2018
    [59] Ho S, Saigal A. Three-dimensional modelling of thermal residual stresses and mechanical behavior of cast SiC/A1 particulate composites. Acta Metall Mater, 1994, 42(10): 3253 doi: 10.1016/0956-7151(94)90458-8
    [60] Shen Y L, Finot M, Needleman A, et al. Effective elastic response of two-phase composites. Acta Metall Mater, 1994, 42(1): 77 doi: 10.1016/0956-7151(94)90050-7
    [61] Liu H T, Sun L Z. Effects of thermal residual stresses on effective elastoplastic behavior of metal matrix composites. Int J Solids Struct, 2004, 41(8): 2189 doi: 10.1016/j.ijsolstr.2003.11.038
    [62] Chatterjee S, Ghosh S S, Bandyopadhyay S, et al. Effect of microstructure and residual stresses on nano-tribological and tensile properties of Al2O3- and SiC-reinforced 6061-Al metal matrix composites. J Compos Mater, 2016, 50(19): 2687 doi: 10.1177/0021998315611481
    [63] Hassanzadeh-Aghdam M K, Edalatpanah S A, Azaripour S. Interphase region effect on the biaxial yielding envelope of SiC fiber-reinforced Ti matrix composites. Proc Inst Mech Eng Part C, 2018, 223(6): 2044
    [64] Fudger S, Sediako D, Karandikar P, et al. Residual stress induced mechanical property enhancement in steel encapsulated light metal matrix composites. Mater Sci Eng A, 2017, 699: 10 doi: 10.1016/j.msea.2017.05.073
    [65] Tevatia A, Srivastava S K. Influence of residual thermal stresses on fatigue crack growth life of discontinuous reinforcements in metal matrix composites. Fatigue Fract Eng Mater Struct, 2017, 40(1): 81 doi: 10.1111/ffe.12477
    [66] Yang D H, Yang Z B, Zhai Z, et al. Homogenization and localization of ratcheting behavior of composite materials and structures with the thermal residual stress effect. Materials, 2019, 12(18): 3048 doi: 10.3390/ma12183048
    [67] Xiao L R, Tu X X, Zhao X J, et al. Microstructural evolution and dimensional stability of TiC-reinforced steel matrix composite during tempering. Mater Lett, 2020, 259: 126871 doi: 10.1016/j.matlet.2019.126871
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2492
  • HTML全文浏览量:  245
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回