3D打印生物陶瓷人工骨支架的研究进展

梁浩文 王月 陈小腾 刘正白 白家鸣

梁浩文, 王月, 陈小腾, 刘正白, 白家鸣. 3D打印生物陶瓷人工骨支架的研究进展[J]. 粉末冶金技术, 2022, 40(2): 100-109. doi: 10.19591/j.cnki.cn11-1974/tf.2021030040
引用本文: 梁浩文, 王月, 陈小腾, 刘正白, 白家鸣. 3D打印生物陶瓷人工骨支架的研究进展[J]. 粉末冶金技术, 2022, 40(2): 100-109. doi: 10.19591/j.cnki.cn11-1974/tf.2021030040
LIANG Hao-wen, WANG Yue, CHEN Xiao-teng, LIU Zheng-bai, BAI Jia-ming. Progress of 3D printing bioceramic on artificial bone scaffolds[J]. Powder Metallurgy Technology, 2022, 40(2): 100-109. doi: 10.19591/j.cnki.cn11-1974/tf.2021030040
Citation: LIANG Hao-wen, WANG Yue, CHEN Xiao-teng, LIU Zheng-bai, BAI Jia-ming. Progress of 3D printing bioceramic on artificial bone scaffolds[J]. Powder Metallurgy Technology, 2022, 40(2): 100-109. doi: 10.19591/j.cnki.cn11-1974/tf.2021030040

3D打印生物陶瓷人工骨支架的研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2021030040
基金项目: 深圳市国际合作项目(GJHZ20200731095606021);深圳市自然科学基金面上项目(20200925155544005);深圳市孔雀团队项目(KQTD20190929172505711,KQTD2017032815444316)
详细信息
    通讯作者:

    E-mail: baijm@sustech.edu.cn

  • 中图分类号: TQ174.5

Progress of 3D printing bioceramic on artificial bone scaffolds

More Information
  • 摘要: 生物陶瓷骨支架是继金属骨支架之后,较为理想的人工骨缺损修复材料。由于骨缺损形状各异,增材制造技术与生物陶瓷的结合,为骨支架的制备提供了个性化、定制化、成型复杂型体的可能。目前,陶瓷人工骨的增材制造技术展现出了巨大应用前景,但仍面临着力学强度不高、生物性功能单一的问题。为此,本文从提高骨支架的力学性能、拓展其生物性功能的角度出发,归纳分析了浆料/粉体体系、脱脂烧结工艺、材料复合、结构设计对支架力学性能的影响,从药物释放、治疗肿瘤两个方面总结了多生物功能支架的研究进展,并介绍了增材制造陶瓷骨支架在生物体内的研究现状。最后,对增材制造生物陶瓷人工骨的发展进行了展望。
  • 图  1  增材制造技术制备生物陶瓷材料原理[911]:(a)上拉式立体光固化工艺;(b)下沉式立体光固化工艺;(c)材料挤出工艺;(d)粘结剂喷射工艺

    Figure  1.  Working principles of the bioceramics additive manufacturing[911]: (a) bottom-up digital light processing; (b) top-down digital light processing; (c) materials extrusion; (d) binder jetting

    图  2  试样的弯曲强度、压缩强度随烧结温度的变化[13]

    Figure  2.  Effects of the sintering temperature on the flexural strength and compression strength[13]

    图  3  骨支架的压缩强度随保温时间的关系[34]

    Figure  3.  Effects of the holding time on the compression strength of scaffolds[34]

    图  4  各种晶格和三次周期最小表面结构[4345]:(a)钻石晶格结构;(b)Octet结构;(c)各向同性BBC结构;(d)P结构;(e)D结构;(f)G结构;(g)IWP结构

    Figure  4.  Lattice-based and TPMS structure[4345]: (a) lattice diamond; (b) octet; (c) body-centered cubic; (d) schwarz primitive; (e) diamond; (f) gyroid; (g) IWP

    图  5  释放不同药物的支架[53,5557]:(a)释放左氧氟沙星;(b)释放阿霉素;(c)释放盐酸四环素;(d)释放活性氧

    Figure  5.  Different drug−releasing scaffolds[53,5557]: (a) levofloxacin loaded; (b) doxorubicin loaded; (c) tetracycline hydrochloride loaded; (d) calcium peroxide loaded

    图  6  不同肿瘤治疗原理的支架[63,65, 6768]:(a)光热原理支架;(b)磁热原理支架;(c)磁热、光热双功能支架;(d)光热、活性氧双功能支架

    Figure  6.  Scaffolds with the different therapied effects[63,65,6768]: (a) photothermal effect; (b) magnetothermal effect; (c) photothermal and magnetothermal effect; (d) photothermal and reactive-oxygen-species effect

    表  1  两种不同三次周期最小表面结构的性能参数

    Table  1.   Properties of two TPMS structures

    TPMS结构
    类型
    模型尺寸 /
    mm
    设计孔隙
    率 / %
    实际孔隙
    率 / %
    屈服强度 /
    MPa
    P结构50×50×5067.1867.233.310±0.310
    G结构50×50×5067.0866.492.000±0.021
    下载: 导出CSV

    表  2  不同结构生物陶瓷人工骨支架的性能参数

    Table  2.   Properties of the different structure scaffolds

    文献结构类型或制备方法材料固含量烧结温度 / ℃孔隙率 / %压缩强度 / MPa
    Yao等[47]P结构HA40%(体积分数)130074.004.09
    Liu等[48]方孔结构TCP60%(质量分数)115040.009.89
    圆孔TCP60 %(质量分数)115044.004.11
    Liu等[49]IWP结构HA45%(质量分数)110049.8015.25
    Huang等[50]G结构TCP52%(体积分数)100066.008.61
    Feng等[13]立方体HA40%(体积分数)125054.521.45
    Macchetta等[51]冷冻浇铸法HA/TCP128072.502.30
    Tang等[52]冷冻浇铸法HA125055.007.50
    冷冻浇铸法HA125063.003.00
    下载: 导出CSV

    表  3  搭载药物骨支架的性能参数

    Table  3.   Characteristics of the drug delivery scaffolds

    文献支架材料加载药物成分药物释放速度细菌种类
    Marques等[53]BCP0.06%左氧氟沙星(质量分数)第30 min释放了近60%,第24 h释放了近71%金黄色葡萄球菌
    Kamboj等[54]硅酸钙19.2 mg·ml‒1万古霉素第40 h为8 mg·mL‒1,第160 h为
    11 mg·mL‒1
    Touri等[55]BCP5%过氧化钙/聚己内酯(质量比)第1 d和第7 d释放氧浓度分别为
    155 mmHg和130 mmHg
    抑制大肠杆菌、金黄色葡萄球菌
    下载: 导出CSV

    表  4  治疗肿瘤骨支架的性能参数

    Table  4.   Characteristics of scaffolds for the tumor therapy

    文献材料治疗原理治疗效果
    Ma等[6366]磷酸钙/聚多巴胺光热治疗体外试验,近88.2%骨肉瘤细胞凋亡,近80.4%乳腺癌细胞凋亡
    氧化石墨烯改性的磷酸三钙光热治疗体外试验,近92.6%的骨肉瘤细胞凋亡;体内试验,近83%的骨肉瘤瘤细胞凋亡
    铜-二氧化硅-TCP光热治疗体外试验,近86.56%的人成骨肉瘤细胞凋亡
    含铁硅酸钙光热治疗、活性氧治疗体外试验,近91.4%的骨肉瘤细胞凋亡
    Zhang等[67]TCP-铁-氧化石墨烯磁热治疗体外试验,近75%的人成骨肉瘤细胞凋亡
    Zhuang等[68]铁-钙钛矿磁热治疗、光热治疗体外试验,近98%的骨肉瘤细胞凋亡
    下载: 导出CSV

    表  5  对兔子进行骨缺损修复的支架参数

    Table  5.   Characteristics of the scaffolds to repair defects in rabbit

    文献部位材料植入时长 / 周支架参数力学性能生物性能
    Shao等[73]颅骨TCP、含质量分数10%镁的硅酸钙(CSi-Mg10)、CSi-Mg10/含质量分数15%TCP(CSi-Mg10/TCP15)12孔隙率分别为
    60.1%、52.1%、57.8%;
    烧结温度为1150 ℃
    CSi-Mg10的压缩强度最高,CSi-Mg10/TCP15次之,分别为90.1 MPa、45 MPa;
    CSi-Mg10的弯曲强度最高, CSi-mg10/TCP15次之,分别为20 MPa、10 MPa
    CSi-Mg10/TCP15的血管再生体积比为35%,CSi-Mg10为22%
    Shao等[74]下颌骨TCP、CSi、CSi-Mg10、Bredigite16孔隙率分别为
    57.3%、56. %、51.2%、61.2%
    6周后,CSi、Bred骨支架质量损失最多,超过10%以上,CSi-Mg10次之,损失了6.8%;
    损失前后CSi-Mg10的弯曲强度、弯曲强度都为最高,分别为
    30 MPa、23 MPa
    CSi-Mg10的血管再生的体积比最大,达30.5%,新生骨体积占比约为30%
    Maliha等[75]颅骨TCP8双嘧达莫浓度分别为100、1000、10000 μmol·L‒1生长因子为1000 μmol·L‒1时,骨生长率最好,为27.9%
    下载: 导出CSV
  • [1] Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg, 2011, 93(23): 2227 doi: 10.2106/JBJS.J.01513
    [2] Lin K, Sheikh R, Romanazzo S, et al. 3D printing of bioceramic scaffolds—barriers to the clinical translation: from promise to reality, and future perspectives. Materials, 2019, 12(17): 2660 doi: 10.3390/ma12172660
    [3] Zafar M J, Zhu D B, Zhang Z Y. 3D printing of bioceramics for bone tissue engineering. Materials, 2019, 12(20): 3361 doi: 10.3390/ma12203361
    [4] Hench L L. Bioceramics: from concept to clinic. J Am Ceram Soc, 1991, 74(7): 1487 doi: 10.1111/j.1151-2916.1991.tb07132.x
    [5] Best S M, Porter A E, Thian E S, et al. Bioceramics: past, present and for the future. J Eur Ceram Soc, 2008, 28(7): 1319 doi: 10.1016/j.jeurceramsoc.2007.12.001
    [6] Bose S, Ke D X, Sahasrabudhe H, et al. Additive manufacturing of biomaterials. Prog Mater Sci, 2018, 93: 45 doi: 10.1016/j.pmatsci.2017.08.003
    [7] Li W L, Liu W W, Li M S, et al. Nanoscale plasticity behavior of additive-manufactured zirconia-toughened alumina ceramics during nanoindentation. Materials, 2020, 13(4): 1006 doi: 10.3390/ma13041006
    [8] Markandan K, Chin J K, Tan M T T. Study on mechanical properties of zirconia‒alumina based ceramics // The 3rd International Conference on Process Engineering and Advanced Materials. Kuala Lumpur, 2014: 81
    [9] Standardization Administration. GB/T 50011—2018 Additive Manufacturing Process Classification and Raw Materials. Beijing: Standards Press of China, 2018

    中国国家标准化管理委员会. GB/T 35021—2018增材制造 工艺分类及原材料. 北京: 中国标准出版社, 2018
    [10] Guo B B, Ji X Z, Wang W, et al. Highly flexible, thermally stable, and static dissipative nanocomposite with reduced functionalized graphene oxide processed through 3D printing. Composites Part B, 2021, 208: 108598 doi: 10.1016/j.compositesb.2020.108598
    [11] Guo B B, Zhang J S, Ananth K P, et al. Stretchable, self-healing and biodegradable water-based heater produced by 3D printing. Composites Part A, 2020, 133: 105863 doi: 10.1016/j.compositesa.2020.105863
    [12] Zhou T Y, Zhang L, Yao Q, et al. SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications. Ceram Int, 2020, 46(6): 7609 doi: 10.1016/j.ceramint.2019.11.261
    [13] Feng C W, Zhang K Q, He R J, et al. Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. J Adv Ceram, 2020, 9: 360 doi: 10.1007/s40145-020-0375-8
    [14] Xia X G, Duan G L. Effect of solid loading on properties of zirconia ceramic by direct ink writing. Mater Res Express, 2021, 8(1): 015403 doi: 10.1088/2053-1591/abd866
    [15] Lee G, Carrillo M, Mckittrick J, et al. Fabrication of ceramic bone scaffolds by solvent jetting 3D printing and sintering: Towards load-bearing applications. Addit Manuf, 2020, 33: 101107
    [16] Sun J X, Binner J, Bai J. 3D printing of zirconia via digital light processing: optimization of slurry and debinding process. J Eur Ceram Soc, 2020, 40(15): 5837 doi: 10.1016/j.jeurceramsoc.2020.05.079
    [17] Sun J X, Binner J, Bai J. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography. J Eur Ceram Soc, 2019, 39(4): 1660 doi: 10.1016/j.jeurceramsoc.2018.10.024
    [18] Zhang K Q, Xie C, Wang G, et al. High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing. Ceram Int, 2019, 45(1): 203 doi: 10.1016/j.ceramint.2018.09.152
    [19] Li K H. Research on Fabricating Alumina Ceramics Through Stereolithography Technology [Dissertation]. Tianjin: Tianjin University, 2017

    李克航. 采用光固化成型技术制备氧化铝陶瓷的研究[学位论文]. 天津: 天津大学, 2017
    [20] Zhang S. Research of Surface Modification of α-Al2O3 and Preparation of UV-Curable Ceramic Suspensions [Dissertation]. Tianjin: Tianjin University, 2017

    张帅. 氧化铝的表面改性及光固化浆料的制备研究[学位论文]. 天津: 天津大学, 2017
    [21] Wang Z, Huang C Z, Wang J, et al. Development of a novel aqueous hydroxyapatite suspension for stereolithography applied to bone tissue engineering. Ceram Int, 2019, 45(3): 3902 doi: 10.1016/j.ceramint.2018.11.063
    [22] Yang H X, Liu W D. Application of dispersants in the preparation of slurry. China Ceram Ind, 2005(2): 27 doi: 10.3969/j.issn.1006-2874.2005.02.007

    杨红霞, 刘卫东. 分散剂在陶瓷浆料制备中的应用. 中国陶瓷工业, 2005(2): 27 doi: 10.3969/j.issn.1006-2874.2005.02.007
    [23] Irsen St H, Leukers B, Höckling Chr, et al. Bioceramic granulates for use in 3D printing: process engineering aspects. Materialwiss Werkstofftech, 2006, 37(6): 533 doi: 10.1002/mawe.200600033
    [24] Lu K, Hiser M, Wu W. Effect of particle size on three dimensional printed mesh structures. Powder Technol, 2009, 192(2): 178 doi: 10.1016/j.powtec.2008.12.011
    [25] Hwa L C, Rajoo S, Noor A M, et al. Recent advances in 3D printing of porous ceramics: A review. Curr Opin Solid State Mater Sci, 2017, 21(6): 323 doi: 10.1016/j.cossms.2017.08.002
    [26] Cima M, Sachs E, Fan T, et al. Three-Dimensional Printing Techniques: US Patent, 5387380. 1995-2-7
    [27] Sun C N, Tian X Y, Wang L, et al. Effect of particle size gradation on the performance of glass-ceramic 3D printing process. Ceram Int, 2017, 43(1): 578 doi: 10.1016/j.ceramint.2016.09.197
    [28] Liu Y, Chen Z W. Research progress in photopolymerization-based 3D printing technology of ceramics. J Mater Eng, 2020, 48(9): 1

    刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展. 材料工程, 2020, 48(9): 1
    [29] Li H, Liu Y S, Liu Y S, et al. Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics. Mater Charact, 2020, 168: 110548 doi: 10.1016/j.matchar.2020.110548
    [30] Li H, Liu Y S, Liu Y S, et al. Influence of debinding holding time on mechanical properties of 3D-printed alumina ceramic cores. Ceram Int, 2021, 47(4): 4884 doi: 10.1016/j.ceramint.2020.10.061
    [31] Wang K, Qiu M, Jiao C, et al. Study on defect-free debinding green body of ceramic formed by DLP technology. Ceram Int, 2020, 46(2): 2438 doi: 10.1016/j.ceramint.2019.09.237
    [32] Shi J P, Bai X, Liu Y Y, et al. Study on grain growth of AZO target during densification process by hot pressing. Powder Metall Technol, 2017, 35(5): 335

    石季平, 白雪, 刘宇阳, 等. AZO靶材热压致密化过程中晶粒生长规律研究. 粉末冶金技术, 2017, 35(5): 335
    [33] Sun L, Jia C C, Cao R J. Research advance on nanopowder sintering. Powder Metall Technol, 2006, 24(2): 146 doi: 10.3321/j.issn:1001-3784.2006.02.015

    孙兰, 贾成厂, 曹瑞军. 纳米粉末烧结的研究现状与前景. 粉末冶金技术, 2006, 24(2): 146 doi: 10.3321/j.issn:1001-3784.2006.02.015
    [34] Farzin A, Hassan S, Ebrahimi-Barough S, et al. A facile two step heat treatment strategy for development of bioceramic scaffolds for hard tissue engineering applications. Mater Sci Eng C, 2019, 105: 110009 doi: 10.1016/j.msec.2019.110009
    [35] Wu H D, Liu W, He R X, et al. Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram Int, 2017, 43(1): 968 doi: 10.1016/j.ceramint.2016.10.027
    [36] Ahmed M K, Ramadan R, Afifi M, et al. Au-doped carbonated hydroxyapatite sputtered on alumina scaffolds via pulsed laser deposition for biomedical applications. J Mater Res Technol, 2020, 9(4): 8854 doi: 10.1016/j.jmrt.2020.06.006
    [37] Liu F, Zhou K C, Liu Y. Effect of milling process on properties of Ti/HA biomedical composites. Powder Metall Technol, 2005, 23(2): 116

    刘芳, 周科朝, 刘咏. 原始粉料的球磨工艺对Ti/HA生物复合材料性能的影响. 粉末冶金技术, 2005, 23(2): 116
    [38] Sharifianjazi F, Pakseresht A H, Asl M S, et al. Hydroxyapatite consolidated by zirconia: applications for dental implant. J Compos Compd, 2020, 2(2): 26
    [39] Li X J, Yuan Y, Liu L Y, et al. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-Des Manuf, 2020, 3(1): 15 doi: 10.1007/s42242-019-00056-5
    [40] He D S, Zhuang C, Xu S Z, et al. 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances. Bioact Mater, 2016, 1(1): 85 doi: 10.1016/j.bioactmat.2016.08.001
    [41] Wang X J, Molino B Z, Pitkanen S, et al. 3D scaffolds of polycaprolactone/copper-doped bioactive glass: architecture engineering with additive manufacturing and cellular assessments in a coculture of bone marrow stem cells and endothelial cells. ACS Biomater Sci Eng, 2019, 5(9): 4496 doi: 10.1021/acsbiomaterials.9b00105
    [42] Galeta T, Raos P, Stojšić J, et al. Influence of structure on mechanical properties of 3D printed objects. Procedia Eng, 2016, 149: 100 doi: 10.1016/j.proeng.2016.06.644
    [43] Ali D, Ozalp M, Blanquer S B, et al. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis. Eur J Mech B Fluids, 2020, 79: 376 doi: 10.1016/j.euromechflu.2019.09.015
    [44] Chen H, Liu Y, Wang C Y, et al. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput Biol Med, 2021, 130: 104241 doi: 10.1016/j.compbiomed.2021.104241
    [45] Wang Z. Lightweight Sole Structure Design and 3D Printing [Dissertation]. Harbin: Harbin Institute of Technology, 2020

    王壮. 轻量化鞋底结构设计及3D打印[学位论文]. 哈尔滨: 哈尔滨工业大学, 2020
    [46] Yu S X, Sun J X, Bai J M, et al. Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Mater Des, 2019, 182: 108021 doi: 10.1016/j.matdes.2019.108021
    [47] Yao Y X, Qin W, Xing B H, et al. High performance hydroxyapatite ceramics and a triply periodic minimum surface structure fabricated by digital light processing 3D printing. J Adv Ceram, 2021, 10(1): 39 doi: 10.1007/s40145-020-0415-4
    [48] Liu S, Mo L, Bi G Y, et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry. Ceram Int, 2021, 47(15): 21108 doi: 10.1016/j.ceramint.2021.04.114
    [49] Liu Z B, Liang H X, Shi T S, et al. Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility. Ceram Int, 2019, 45(8): 11079 doi: 10.1016/j.ceramint.2019.02.195
    [50] Huang X L, Dai H L, Hu Y F, et al. Development of a high solid loading β-TCP suspension with a low refractive index contrast for DLP-based ceramic stereolithography. J Eur Ceram Soc, 2021, 41(6): 3743 doi: 10.1016/j.jeurceramsoc.2020.12.047
    [51] Macchetta A, Turner I G, Bowen C R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater, 2009, 5(4): 1319 doi: 10.1016/j.actbio.2008.11.009
    [52] Tang Y, Zhao K, Hu L, et al. Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceram Int, 2013, 39(8): 9703 doi: 10.1016/j.ceramint.2013.04.038
    [53] Marques C F, Olhero S M, Torres P M, et al. Novel sintering-free scaffolds obtained by additive manufacturing for concurrent bone regeneration and drug delivery: Proof of concept. Sci Eng C, 2019, 94: 426 doi: 10.1016/j.msec.2018.09.050
    [54] Kamboj N, Rodríguez M A, Rahmani R, et al. Bioceramic scaffolds by additive manufacturing for controlled delivery of the antibiotic vancomycin. Proc Est Acad Sci, 2019, 68(2): 185 doi: 10.3176/proc.2019.2.10
    [55] Touri M, Moztarzadeh F, Osman N A A, et al. Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications. Ceram Int, 2019, 45(1): 805 doi: 10.1016/j.ceramint.2018.09.247
    [56] Dang W T, Yi K, Ju E G, et al. 3D printed bioceramic scaffolds as a universal therapeutic platform for synergistic therapy of osteosarcoma. ACS Appl Mater Interfaces, 2021, 13(16): 18488 doi: 10.1021/acsami.1c00553
    [57] Tamjid E, Bohlouli M, Mohammadi S, et al. Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing. J Biomed Mater Res A, 2020, 108(6): 1426 doi: 10.1002/jbm.a.36914
    [58] Ma H S, Feng C, Chang J, et al. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater, 2018, 79: 37 doi: 10.1016/j.actbio.2018.08.026
    [59] Xu C J, Yuan Z L, Kohler N, et al. FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc, 2009, 131(42): 15346 doi: 10.1021/ja905938a
    [60] Jaque D, Maestro L M, Del Rosal B, et al. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16): 9494 doi: 10.1039/C4NR00708E
    [61] Da Li G, Lin Y, Pan T H, et al. Synthesis and characterization of magnetic bioactive glass-ceramics containing Mg ferrite for hyperthermia. Mater Sci Eng C, 2010, 30(1): 148 doi: 10.1016/j.msec.2009.09.011
    [62] Dong S J, Wang X D, Shen G F, et al. Research progress on functional modifications and applications of bioceramic scaffolds. J Inorg Mater, 2020, 35(8): 867 doi: 10.15541/jim20190561

    董少杰, 王旭东, 沈国芳, 等. 生物陶瓷支架的功能改性及应用研究进展. 无机材料学报, 2020, 35(8): 867 doi: 10.15541/jim20190561
    [63] Ma H S, Jiang C, Zhai D, et al. A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv Funct Mater, 2016, 26(8): 1197 doi: 10.1002/adfm.201504142
    [64] Ma H S, Ma Z J, Chen Q F, et al. Bifunctional, copper-doped, mesoporous silica nanosphere-modified, bioceramic scaffolds for bone tumor therapy. Front Chem, 2020, 8: 610232 doi: 10.3389/fchem.2020.610232
    [65] Ma H S, Li T, Huan Z G, et al. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG Asia Mater, 2018, 10(4): 31 doi: 10.1038/s41427-018-0015-8
    [66] Ma H S, Luo J, Sun Z, et al. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials, 2016, 111: 138 doi: 10.1016/j.biomaterials.2016.10.005
    [67] Zhang Y L, Zhai D, Xu M C, et al. 3D-printed bioceramic scaffolds with a Fe3O4/graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. J Mater Chem B, 2016, 4(17): 2874 doi: 10.1039/C6TB00390G
    [68] Zhuang H, Lin R, Liu Y, et al. Three-dimensional-printed bioceramic scaffolds with osteogenic activity for simultaneous photo/magnetothermal therapy of bone tumors. ACS Biomater Sci Eng, 2019, 5(12): 6725 doi: 10.1021/acsbiomaterials.9b01095
    [69] Hembus J, Rößler L, Jackszis M, et al. Influence of metallic deposition on ceramic femoral heads on the wear behavior of artificial hip joints: A simulator study. Materials, 2020, 13(16): 3569 doi: 10.3390/ma13163569
    [70] Cook S D, Thomas K A, Kay J F, et al. Hydroxyapatite-coated titanium for orthopedic implant applications. Clin Orthop Relat Res, 1988, 232: 225
    [71] Lombardi Jr A V, Berend K R, Mallory T H. Hydroxyapatite-coated titanium porous plasma spray tapered stem: experience at 15 to 18 years. Clin Orthop Relat Res, 2006, 453: 81 doi: 10.1097/01.blo.0000238872.01767.09
    [72] Nakahira A, Murakami T, Onoki T, et al. Fabrication of porous hydroxyapatite using hydrothermal hot pressing and post-sintering. J Am Ceram Soc, 2005, 88(5): 1334 doi: 10.1111/j.1551-2916.2005.00238.x
    [73] Shao H F, Liu A, Ke X R, et al. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. J Mater Chem B, 2017, 5(16): 2941 doi: 10.1039/C7TB00217C
    [74] Shao H F, Sun M, Zhang F, et al. Custom repair of mandibular bone defects with 3D printed bioceramic scaffolds. J Dent Res, 2018, 97(1): 68 doi: 10.1177/0022034517734846
    [75] Maliha S G, Lopez C D, Coelho P G, et al. Bone tissue engineering in the growing calvarium using dipyridamole-coated 3D printed bioceramic scaffolds: construct optimization and effects to cranial suture patency. Plast Reconstr Surg, 2020, 145(2): 337e doi: 10.1097/PRS.0000000000006483
    [76] Shen C C, Zhang Y, Li Q F, et al. Application of three-dimensional printing technique in artificial bone fabrication for bone defect after mandibular angle ostectomy. Chin J Rep Reconstr Surg, 2014, 28(3): 300
    [77] Maroulakos M, Kamperos G, Tayebi L, et al. Applications of 3D printing on craniofacial bone repair: A systematic review. J Dent, 2019, 80: 1 doi: 10.1016/j.jdent.2018.11.004
    [78] Lee U L, Lim J Y, Park S N, et al. A clinical trial to evaluate the efficacy and safety of 3D printed bioceramic implants for the reconstruction of zygomatic bone defects. Materials, 2020, 13(20): 4515 doi: 10.3390/ma13204515
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  1514
  • HTML全文浏览量:  983
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-24
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回