高级检索

粉末冶金铜铁合金的组织与性能

Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy

  • 摘要: 分别以元素混合粉、机械合金化粉和水气联合雾化合金粉为原料,结合冷等静压成形、烧结及轧制工艺制备了Cu‒5%Fe合金(质量分数),对比了三种原料粉的铜铁合金粉末形貌、微观组织、力学性能及物理性能。结果表明,铁颗粒分布均匀,元素混合、机械合金化和水气联合雾化法粉末烧结体中铁颗粒平均尺寸分别为9.4 μm、1.2 μm、3.5 μm。水气联合雾化法合金样品综合性能最优,抗拉强度550 MPa,导电率59.5% IACS,磁饱和强度9.1 emu·g‒1

     

    Abstract: Cu‒5%Fe alloys (mass fraction) were prepared by cold isostatic pressing, sintering, and rolling, using the elemental mixed powders, mechanical alloying powders, and water-gas combined atomized alloy powders as the raw materials. The powder morphology, microstructure, mechanical properties, and physical properties of the copper-iron alloys fabricated by the three kinds of raw materials were compared. The results show that, the iron particles are uniformly distributed, and the average size of the iron particles in the sintered body consisted of the powders by element mixing, mechanical alloying, and water-gas combined atomization are 9.4 μm, 1.2 μm, and 3.5 μm, respectively. The alloys with the water-gas combined atomization powders show the best overall performance as the tensile strength of 550 MPa, the electrical conductivity of 59.5% IACS, and the magnetic saturation strength of 9.1 emu·g‒1.

     

/

返回文章
返回