高级检索

粉末冶金铜铁合金的组织与性能

张陈增, 陈存广, 李沛, 陆天行, 杨芳, 郭志猛

张陈增, 陈存广, 李沛, 陆天行, 杨芳, 郭志猛. 粉末冶金铜铁合金的组织与性能[J]. 粉末冶金技术, 2022, 40(2): 139-144. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040009
引用本文: 张陈增, 陈存广, 李沛, 陆天行, 杨芳, 郭志猛. 粉末冶金铜铁合金的组织与性能[J]. 粉末冶金技术, 2022, 40(2): 139-144. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040009
ZHANG Chen-zeng, CHEN Cun-guang, LI Pei, LU Tian-xing, YANG Fang, GUO Zhi-meng. Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2022, 40(2): 139-144. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040009
Citation: ZHANG Chen-zeng, CHEN Cun-guang, LI Pei, LU Tian-xing, YANG Fang, GUO Zhi-meng. Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy[J]. Powder Metallurgy Technology, 2022, 40(2): 139-144. DOI: 10.19591/j.cnki.cn11-1974/tf.2021040009

粉末冶金铜铁合金的组织与性能

基金项目: 国家自然科学基金资助项目(92066205);中央高校基本科研业务费专项资金资助项目(FRF-GF-19-012AZ)
详细信息
    通讯作者:

    陈存广: E-mail: cgchen@ustb.edu.cn

  • 中图分类号: TG142.71

Microstructure and properties of Cu‒Fe alloys prepared by powder metallurgy

More Information
  • 摘要: 分别以元素混合粉、机械合金化粉和水气联合雾化合金粉为原料,结合冷等静压成形、烧结及轧制工艺制备了Cu‒5%Fe合金(质量分数),对比了三种原料粉的铜铁合金粉末形貌、微观组织、力学性能及物理性能。结果表明,铁颗粒分布均匀,元素混合、机械合金化和水气联合雾化法粉末烧结体中铁颗粒平均尺寸分别为9.4 μm、1.2 μm、3.5 μm。水气联合雾化法合金样品综合性能最优,抗拉强度550 MPa,导电率59.5% IACS,磁饱和强度9.1 emu·g‒1
    Abstract: Cu‒5%Fe alloys (mass fraction) were prepared by cold isostatic pressing, sintering, and rolling, using the elemental mixed powders, mechanical alloying powders, and water-gas combined atomized alloy powders as the raw materials. The powder morphology, microstructure, mechanical properties, and physical properties of the copper-iron alloys fabricated by the three kinds of raw materials were compared. The results show that, the iron particles are uniformly distributed, and the average size of the iron particles in the sintered body consisted of the powders by element mixing, mechanical alloying, and water-gas combined atomization are 9.4 μm, 1.2 μm, and 3.5 μm, respectively. The alloys with the water-gas combined atomization powders show the best overall performance as the tensile strength of 550 MPa, the electrical conductivity of 59.5% IACS, and the magnetic saturation strength of 9.1 emu·g‒1.
  • 钛合金是一种比强度高、耐蚀性能优异的合金材料, 对航空航天、汽车制造等领域发挥了重要的作用。但在实际应用过程中, 钛合金存在抗高温氧化与耐磨性不足的问题, 严重限制了该合金材料在高温载荷领域的进一步推广应用[1-3]。为了进一步提升钛合金的各项性能, 大多数研究人员主要通过喷焊、气相沉积、激光熔覆等工艺对钛合金进行表面处理[4-6]。其中, 激光熔覆技术可以在不改变钛合金性能的前提下使涂层间形成良好冶金结合状态, 对于钛合金材料摩擦性能的提升起到了明显的促进作用[7-8]。现阶段, 许多学者在Ti4合金耐磨性方面主要是通过增加该材料的表面硬度来实现。不过, 加入钛合金中的TiN、WC、VC等硬质相颗粒在860℃温度下却存在容易被空气氧化的问题[9-10]。例如, Feng等[11]利用激光熔覆处理工艺对Ti5合金表面进行处理, 生成包含增强相TiNi/Ti2Ni基涂层, 并对该涂层进行了表征, 得到涂层中形成了具有均匀分布状态的陶瓷相颗粒, 从而增加了合金材料的耐磨性。Guo等[12]则利用激光熔覆技术对Ni Cr BSi/WC–Ni合金涂层进行了处理, 制得了具有良好耐磨性能的合金涂层。齐鸣等[13]采用激光熔覆工艺使高温合金表面生成MoSi2/Al涂层, 之后在1050℃下对该涂层实施了耐高温氧化性测试, 当涂层中含有的Al比例上升后, 生成的氧化膜中的Al2O3会显著提高熔覆层的耐高温氧化性。余鹏程等[14]对Ti4合金表面进行激光熔覆处理后得到了含有增强相Al3Ti/Ni Ti基涂层, 研究得到当涂层内含有的Al3Ni2脆性颗粒数量增加后, 涂层耐磨性发生了降低的现象。

    到目前为止, 大部分学者都是将研究重点集中于通过激光熔覆处理方法来提升钛合金的耐磨性方面, 但很少有文献报道关于钛合金耐高温抗氧化性能的改善内容[15]。本文主要通过激光熔覆处理工艺使Ti4合金表面生成Ni Al Si涂层, 并深入探讨了在860℃温度下该涂层对抗氧化性提升的效果及其作用机理。

    实验用原料为Ti4合金, 试样尺寸40 mm×40 mm×8 mm, 用砂纸打磨试样熔覆面, 充分去除表面氧化膜。选择80Ni–40Al–20Si复合粉末作为熔覆材料, 采用QM-3SP04型行星球磨机对该粉末进行12 h的球磨处理。

    先在Ti4合金试样涂覆一层甲基纤维素黏结剂, 再铺设一层厚度为1.5 mm的混合粉末, 再将其放入120℃的干燥箱内进行2 h的保温。本实验在DLS-980.10-3000C半导体激光器上完成激光熔覆过程, 工艺参数为: 输出功率2 kW, 扫描速度3.5 mm·s-1, 光斑大小5 mm×2.5 mm。

    通过线切割方式得到熔覆层的截面金相试样, 并对该试样进行了X射线衍射(X-ray diffraction, XRD) 表征。利用S-4700型场发射扫描电镜(scanning electron microscopy, SEM) 对涂层微观组织进行了观察, 同时在该电镜附带的能谱仪(energy disperse spectroscope, EDS) 上表征了涂层的各元素组成情况。利用HMF1400-50高温电阻炉测试其抗高温氧化性能, 并计算单位面积对应的质量变化情况。对经过氧化处理的合金与涂层进行金相观察。

    图 1 (a) 中可以看到涂层横截面的扫描电子显微形貌。根据图 1 (a) 可知, 在涂层内也没有观察到裂纹结构, 只有少数气孔存在。从图 1 (b) 中可以看到在Ti4和涂层的结合部位形成了熔合线, 可以推断涂层和钛合金之间形成了良好的冶金结合状态。同时还可以观察到在涂层的底部区域形成了众多的柱状晶, 这主要是因为受到凝固冷却的影响, 钛合金垂直的方向上具有最快的冷却速率, 从而导致涂层的下部晶粒优先从垂直钛合金表面的方向上开始生长。图 1 (c) 是对应于图 1 (b) 的放大图, 可以明显看到该图包含了块状区域A与网状区域B两种, 对这些区域进行能谱测试可知, 区域A中的元素类型包括Ti与Si, 两者的原子数分数比接近5:3, 可见该区域的成分主要是Ti5Si3金属间化合物; 对区域B进行元素分析得到该区域包含Ni与Al两种元素, 其原子数分数比接近3:2, 进一步结合X射线衍射图谱可知, 区域B的成分主要是Al3Ni2金属间化合物, 因此可以推断涂层中包含了Ti5Si3与Al3Ni2两种主要成分。

    图  1  合金涂层横截面扫描电子显微组织形貌: (a) 整体; (b) 热影响区; (c) 热影响区放大图
    Figure  1.  SEM images of alloy coating in cross section: (a) integral; (b) heat affected zone; (c) magnification of heat affected zone
    表  1  图 1 (c) 中区域A和区域B能谱分析
    Table  1.  EDS analysis of area A and area B in Fig. 1 (c)
    区域 原子数分数/%
    Ti Ni Al Si
    A 44.28 22.18 5.48 28.06
    B 23.54 42.18 30.02 4.26
    下载: 导出CSV 
    | 显示表格

    表 2中可以看到对钛合金与合金涂层进行高温氧化测试得到的试样单位面积质量变化值, 其中钛合金的单位面积质量增加值显著高于合金涂层, 可见合金涂层的耐高温氧化性能优于钛合金。经过40 h的恒温氧化处理后, 试样单位面积质量增加了24.4 mg·cm-2, 可见在860℃温度下, Ti4合金的表面发生了明显的氧化过程, 此时形成的氧化膜也不能有效抑制氧原子的扩散过程。其中, 在初期高温氧化阶段, 合金涂层具有很快的氧化速率, 当氧化时间不断增加后, 合金涂层的氧化速率降低, 因此可以推断合金涂层表面氧化膜具有降低氧化速率的作用; 经过40 h的高温氧化处理后, 粉末合金涂层的质量增加值是2.19 mg·cm-2, 比Ti4合金的耐高温氧化性能提高了12倍左右。

    表  2  Ti4合金和合金涂层高温氧化(860℃) 测试结果
    Table  2.  High temperature oxidation test results of Ti4 alloy and alloy coating at 860℃
    样品 单位面积质量变化/(mg·cm2)
    5 h 10 h 20 h 30 h 40 h
    Ti4 合金 2.40 4.40 9.20 16.70 24.40
    合金涂层 1.82 1.90 2.02 2.11 2.19
    下载: 导出CSV 
    | 显示表格

    Ti4合金与粉末合金涂层在860℃温度下进行40 h的氧化处理后, 对其表面氧化层进行X射线衍射测试得到如图 2所示的谱图。从图 2的测试谱图中可以发现, Ti4合金的氧化层基本包含Al2O3与TiO2两种物相成分, 并且TiO2的衍射峰强度显著高于Al2O3, 说明氧化膜主要是由TiO2构成。由于在860℃下V2O5的挥发性较高, 因此在X射线衍射谱图中未观察到该氧化物的衍射峰, 同时氧化膜也因为V2O5的挥发而形成多孔结构, 使氧原子更易向膜内扩散, 导致合金耐高温氧化性降低。

    图  2  860℃氧化处理40 h后Ti4合金(a) 和合金涂层表面氧化层(b) X射线衍射图谱
    Figure  2.  XRD patterns of Ti4 alloy (a) and oxide layer of alloy coating surface (b) after oxidation at 860℃for 40 h

    图 3 (a) 为在860℃下进行40 h氧化处理后得到的Ti4合金横截面扫描电子显微形貌, 可以发现此时Ti4合金表面出现了较严重腐蚀的情况, 生成的氧化膜表现出了明显的热脆性特征, 较易从表面发生脱落的现象。对Ti4合金的氧化膜微观形貌进行分析可知, 氧化膜主要由许多球形颗粒与柱状物构成, 根据能谱分析(表 3) 可知, 柱状物成分主要是TiO2。在TiO2的形核与生长期间, 还会形成少量的Al2O3, 使氧化膜中形成众多微孔, 这种不连续的氧化膜结构不能发挥有效阻止氧原子扩散的作用, 不利于提高合金的耐高温氧化性。

    图  3  Ti4合金和合金涂层氧化膜横截面扫描电子显微形貌: (a) Ti4合金; (b) 合金涂层
    Figure  3.  Cross section SEM morphology of Ti4 alloy and alloy coating oxidation film: (a) Ti4 alloy; (b) alloy coating
    表  3  图 3区域A和区域B能谱分析
    Table  3.  EDS analysis of regions A and B in Fig. 3
    区域 原子数分数/%
    Ti Ni Al Si O
    A 38.20 1.20 7.86 2.68 50.06
    B 8.26 4.86 35.22 3.38 48.28
    下载: 导出CSV 
    | 显示表格

    图 3 (b) 为在860℃下进行40 h氧化处理后得到的合金涂层氧化膜扫描电子显微形貌。从图中可知, 合金涂层与氧化膜之间保持紧密结合状态, 未看到有脱落情况出现。对该涂层进行能谱分析(表 3) 可知, 其表面氧化膜中的元素主要为O、Al, 同时还有部分Si、Ni、Ti, 因此可以推断该氧化膜的主要成分时Al2O3, 此外还含有部分NiO、SiO2、TiO等。因为Al2O3能够形成致密的连续结构, 起到明显抑制O元素扩散的效果, 使合金涂层耐高温抗氧化性能获得显著提高。

    (1) Ti4合金和合金涂层的结合部位形成了熔合线, 可以推断合金涂层和钛合金之间形成了良好的冶金结合状态。同时还可以观察到在涂层的底部区域形成了众多的柱状晶, 涂层中包含了Ti5Si3与Al3Ni2两种主要成分。

    (2) 钛合金的单位面积质量增加值显著高于合金涂层, 可见合金涂层的耐高温氧化性能优于钛合金。经过40 h的高温氧化处理后, 粉末涂层的质量增加值是2.19 mg·cm-2, 比Ti4合金的耐高温氧化性能提高了12倍左右。

    (3) 在860℃下进行40 h氧化处理得到的合金涂层与氧化膜之间保持紧密结合状态, 未看到有脱落情况出现, 氧化膜的主要成分是Al2O3

  • 图  1   原料粉末显微形貌:(a)电解铜粉;(b)羰基铁粉

    Figure  1.   SEM images of the raw powders: (a) electrolytic copper powders; (b) carbonyl iron powders

    图  2   机械合金化粉末及水气联合雾化粉末显微形貌:(a)、(b)机械合金化合金粉末;(c)、(d)水气联合雾化合金粉

    Figure  2.   SEM images of the mechanically alloyed powders and the water-gas combined atomized powders: (a) and (b) mechanically alloyed powders; (c) and (d) water-gas combined atomized powders

    图  3   Cu‒5%Fe机械合金化粉末截面形貌(a)及能谱分析((b)、(c))

    Figure  3.   Cross-sectional image (a) and energy spectrum ((b) and (c)) of the Cu‒5%Fe powders after mechanical alloying

    图  4   Cu‒5%Fe水气雾化合金粉末截面形貌(a)及能谱分析(b)

    Figure  4.   Cross-sectional image (a) and energy spectrum (b) of the Cu‒5%Fe water vapor atomized alloy powders

    图  5   Cu‒5%Fe合金烧结态光学形貌:(a)元素混合;(b)机械合金化;(c)水气联合雾化

    Figure  5.   OM images of the sintered Cu‒5%Fe alloys: (a) element mixing; (b) mechanical alloying; (c) combined atomization of water and gas

    图  6   Cu‒5%Fe合金冷轧态纵截面显微形貌:(a)元素混合;(b)机械合金化;(c)水气联合雾化

    Figure  6.   Longitudinal section SEM images of the cold-rolled Cu‒5%Fe alloys: (a) element mixing; (b) mechanical alloying; (c) combined atomization of water and gas

    图  7   冷轧态Cu‒5%Fe合金工程应力应变曲线

    Figure  7.   Engineering stress-strain curves of the cold rolled Cu‒5%Fe alloys

    图  8   Cu‒5%Fe合金冷轧态磁滞回线

    Figure  8.   Hysteresis loop of the cold rolled Cu‒5%Fe alloys

    表  1   Cu‒5%Fe合金冷轧态性能参数对比

    Table  1   Comparison of performance parameters of the cold rolled Cu‒5%Fe alloys

    性能指标烧结态铁相尺寸 /
    μm
    抗拉强度 /
    MPa
    延伸率 /
    %
    弹性模量 /
    GPa
    导电率 /
    % IACS
    磁饱和强度 /
    (emu·g‒1)
    矫顽力 /
    Oe
    元素混合9.4489.20.8125.938.627.456.3
    机械合金化1.2509.63.283.443.214.810.5
    水气联合雾化3.5550.11.8111.259.59.1168.0
    下载: 导出CSV
  • [1]

    Lu X, Yao D, Chen Y, et al. Microstructure and hardness of Cu‒12%Fe composite at different drawing strains. J Zhejiang Univ Sci, 2014, 15: 149 DOI: 10.1631/jzus.A1300164

    [2]

    Funkenbusch P D, Courtney T H. Microstructural strengthening in cold worked in situ Cu‒14.8 Vol. % Fe composites. Scr Mater, 1981, 15(12): 1349

    [3] 胡号, 李雷, 许磊, 等. Cu‒Fe合金制备技术研究进展. 粉末冶金技术, 2019, 37(6): 468

    Hu H, Li L, Xu L, et al. Research progress on preparation technology of Cu‒Fe alloy. Powder Metall Technol, 2019, 37(6): 468

    [4] 何统求, 王丽, 彭传校, 等. Fe‒Cu合金相分离过程. 材料工程, 2016, 44(2): 115 DOI: 10.11868/j.issn.1001-4381.2016.02.018

    He T Q, Wang L, Peng C X, et al. Fe‒Cu alloy phase separation process. Mater Eng, 2016, 44(2): 115 DOI: 10.11868/j.issn.1001-4381.2016.02.018

    [5]

    Nakagawa Y. Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state. Acta Metall, 1958, 6(11): 704 DOI: 10.1016/0001-6160(58)90061-0

    [6]

    Wang W, Wu Y, Li L. Liquid-liquid phase separation of freely falling undercooled ternary Fe‒Cu‒Sn alloy. Sci Rep, 2015, 5: 16335 DOI: 10.1038/srep16335

    [7]

    Wang M, Zhang R, Xiao Z, et al. Microstructure and properties of Cu‒10wt%Fe alloy produced by double melt mixed casting and multi-stage thermomechanical treatment. J Alloys Compd, 2020, 820: 153323 DOI: 10.1016/j.jallcom.2019.153323

    [8]

    Wang M, Jiang Y, Li Z, et al. Microstructure evolution and deformation behaviour of Cu‒10wt%Fe alloy during cold rolling. Mater Sci Eng A, 2021, 801: 140379 DOI: 10.1016/j.msea.2020.140379

    [9]

    Zou J, Lu D, Fu Q, et al. Microstructure and properties of Cu–Fe deformation processed in-situ composite. Vacuum, 2019, 167: 54 DOI: 10.1016/j.vacuum.2019.05.030

    [10]

    Liu S, Jie J, Guo Z, et al. A comprehensive investigation on microstructure and magnetic properties of immiscible Cu‒Fe alloys with variation of Fe content. Mater Chem Phys, 2019, 238: 121909 DOI: 10.1016/j.matchemphys.2019.121909

    [11]

    Liu S, Jie J, Guo Z, et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions. J Alloys Compd, 2018, 742: 99 DOI: 10.1016/j.jallcom.2018.01.306

    [12]

    Liu S, Jie J, Dong B, et al. Novel insight into evolution mechanism of second liquid-liquid phase separation in metastable immiscible Cu‒Fe alloy. Mater Des, 2018, 156: 71 DOI: 10.1016/j.matdes.2018.06.044

    [13]

    Benghalem A, Morris D. Microstructure and strength of wire-drawn Cu‒Ag filamentary composites. Acta Mater, 1997, 45(1): 397 DOI: 10.1016/S1359-6454(96)00152-8

    [14]

    Funkenbusch P, Courtney T. Reply to comments on “on the role of interphase barrier and substructural strengthening in deformation processed composite materials. Scr Metall Mater, 1990, 24: 1175 DOI: 10.1016/0956-716X(90)90322-8

    [15]

    Han K, Vasquez A, Xin Y, et al. Microstructure and tensile properties of nanostructured Cu‒25wt%Ag. Acta Mater, 2003, 51(3): 767 DOI: 10.1016/S1359-6454(02)00468-8

    [16]

    Abbas S F, Park K T, Kim T S, et al. Effect of composition and powder size on magnetic properties of rapidly solidified copper-iron alloys. J Alloys Compd, 2018, 741: 1188 DOI: 10.1016/j.jallcom.2018.01.245

    [17]

    Rowlands G. The variation of coercivity with particle size. J Phys D Appl Phys, 1976, 9: 1267 DOI: 10.1088/0022-3727/9/8/013

    [18]

    Dai X, Xie M, Zhou S, et al. Formation mechanism and improved properties of Cu95Fe5 homogeneous immiscible composite coating by the combination of mechanical alloying and laser cladding. J Alloys Compd, 2018, 740: 194 DOI: 10.1016/j.jallcom.2018.01.007

  • 期刊类型引用(0)

    其他类型引用(4)

图(8)  /  表(1)
计量
  • 文章访问数:  2033
  • HTML全文浏览量:  590
  • PDF下载量:  134
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-04-07
  • 录用日期:  2021-05-23
  • 网络出版日期:  2021-05-20
  • 刊出日期:  2022-04-25

目录

/

返回文章
返回