高导热氮化硅陶瓷用烧结助剂的研究进展

王月隆 吴昊阳 贾宝瑞 张一铭 张智睿 刘昶 田建军 秦明礼

王月隆, 吴昊阳, 贾宝瑞, 张一铭, 张智睿, 刘昶, 田建军, 秦明礼. 高导热氮化硅陶瓷用烧结助剂的研究进展[J]. 粉末冶金技术, 2024, 42(1): 1-13. doi: 10.19591/j.cnki.cn11-1974/tf.2021070001
引用本文: 王月隆, 吴昊阳, 贾宝瑞, 张一铭, 张智睿, 刘昶, 田建军, 秦明礼. 高导热氮化硅陶瓷用烧结助剂的研究进展[J]. 粉末冶金技术, 2024, 42(1): 1-13. doi: 10.19591/j.cnki.cn11-1974/tf.2021070001
WANG Yuelong, WU Haoyang, JIA Baorui, ZHANG Yiming, ZHANG Zhirui, LIU Chang, TIAN Jianjun, QIN Mingli. Research progress on sintering additive used for high thermal conductivity silicon nitride ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 1-13. doi: 10.19591/j.cnki.cn11-1974/tf.2021070001
Citation: WANG Yuelong, WU Haoyang, JIA Baorui, ZHANG Yiming, ZHANG Zhirui, LIU Chang, TIAN Jianjun, QIN Mingli. Research progress on sintering additive used for high thermal conductivity silicon nitride ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 1-13. doi: 10.19591/j.cnki.cn11-1974/tf.2021070001

高导热氮化硅陶瓷用烧结助剂的研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2021070001
基金项目: 国家自然科学基金资助项目(51574031,51574030,51574029,51604240);河北省重点研究发展项目(20311001D);北京市自然科学基金资助项目(2202031,2174079,2162027);中央高校基础研究基金资助项目(FRF-TP-19-015A3,FRF-TP-20-100A1Z,FRF-TP-19-003C2,FRF-TP-17-034A2);USTB–NTUT联合研究项目(06310061);湖南省教育厅科研经费资助项目(18A196);北京科技大学顺德研究生院博士后研究基金资助项目(2020BH014)
详细信息
    通讯作者:

    wuhaoyang@ustb.edu.cn (吴昊阳)

    E-mail: qinml@mater.ustb.edu.cn (秦明礼)

  • 中图分类号: TF123; TQ174.7

Research progress on sintering additive used for high thermal conductivity silicon nitride ceramics

More Information
  • 摘要: 氮化硅被认为是综合性能最好的陶瓷材料,良好的导热性和优异的力学性能使其成为大功率电子器件用陶瓷基板的主流材料,在纯电动/混合电动汽车中得到广泛应用。烧结助剂对氮化硅烧结活性、微观组织和第二相成分及含量影响较大,进而影响陶瓷导热性能,选择合适的烧结助剂对制备高导热氮化硅陶瓷非常重要。本文整理了目前制备高导热氮化硅陶瓷用烧结助剂研究现状,分析了烧结助剂对氮化硅陶瓷导热性及力学性能的影响,并对烧结助剂未来的研究方向和发展趋势提出了展望。
  • 图  1  液相烧结组织形貌变化示意图[20]

    Figure  1.  Schematic of the microstructure changes during the liquid phase sintering[20]

    图  2  MgO和Al2O3对氮化硅陶瓷导热性能的影响[23]

    Figure  2.  Effect of the MgO and Al2O3 content on the thermal conductivity of Si3N4 ceramics[23]

    图  3  不同稀土氧化物烧结助剂形成第二相厚度[35]

    Figure  3.  HRTEM micrographs of the grain boundaries in Si3N4 with the different sintering additives[35]

    图  4  稀土离子半径与氮化硅热导率的关系[36]

    Figure  4.  Relationship between the thermal conductivity of Si3N4 and the ion radius of rare earth elements[36]

    图  5  MgO粒径对氮化硅陶瓷微观形貌的影响[43]:(a)、(c)D50=5.9 μm;(b)、(d)D50=1.6 μm

    Figure  5.  Effect of MgO particle size on micromorphology of the silicon nitride ceramics[43]: (a), (c) D50=5.9 μm; (b), (d) D50=1.6 μm

    图  6  烧结助剂摩尔分数对氮化硅陶瓷热导率的影响[45]:(a)2%Y2O3xMgO,x=0~8%;(b)yY2O3−5%MgO,y=0~5%

    Figure  6.  Thermal conductivities of the sintered Si3N4 ceramics with the different sintering additives[45]: (a) 2%Y2O3xMgO,x=0~8%; (b) yY2O3−5%MgO,y=0~5%

    图  7  不同保温时间下氮化硅陶瓷微观形貌图[46]:(a)、(b)3 h;(c)、(d)60 h

    Figure  7.  SEM images of the Si3N4 ceramics obtained at 1900 ℃ for the various holding time[46]: (a), (b) 3 h; (c), (b) 60 h

    图  8  晶格氧含量与氮化硅陶瓷热导率的关系[48]

    Figure  8.  Relationship between the lattice oxygen contents and the thermal conductivities for sintered Si3N4 ceramics[48]

    图  9  经过烧结处理后3YM样品能谱分析[52]

    Figure  9.  Energy spectrum analysis of the elements distribution in sample 3YM after sintering[52]

    图  10  氮化硅陶瓷扫描电子显微形貌[64]:(a)、(c)SN;(b)、(d)SNC

    Figure  10.  SEM inmages of the Si3N4 ceramics samples[64]: (a), (c) SN; (b), (d) SNC

    图  11  氮化硅基板热导率随温度的变化(SN1, SNN10 , SNN15, and SNN20)[65]

    Figure  11.  Temperature dependence of thermal conductivities of the Si3N4 substrate (SN1, SNN10 , SNN15, and SNN20)[65]

    表  1  各种陶瓷基板的物理性能

    Table  1.   Physical properties of the ceramic substrates

    材料 热导率 /
    (W m−1·K−1
    热膨胀系数 /
    (×10−6 K−1
    介电常数
    (1 MHz)
    电场强度 /
    (kV·mm−1
    断裂韧性 /
    (MPa·m1/2
    抗弯强度 /
    MPa
    可靠性* /
    Al2O3 30 7.2 9.7 10 3.0 400 300
    BeO 200~250 7.5 6.7 10 3.3 250
    AlN 150~200 3.5 8.9 15 2.7 350 200
    Si3N4 90 3.2 9.4 >20 6.0~8.0 600~800 >5000
    *注:可靠性是指在−40~+150 ℃条件下循环,材料不破坏次数。
    下载: 导出CSV

    表  2  不同烧结助剂下物相强度[29]

    Table  2.   Phase intensity with the different sintering additives[29]

    烧结助剂烧结时间 / h物相(强度)*
    La2O34β-Si3N4(s), α-Si3N4(s), La20N4Si12O48(m), La2SiO5(w)
    16β-Si3N4(vs), La20N4Si12O48(m), La2SiO5(w)
    Nd2O34β-Si3N4(vs), Nd2Si3O3N4(w), Nd4Si3O12 (w)
    16β-Si3N4(vs), Nd2Si3O3N4(w), Nd4Si3O12 (w)
    Gd2O34β-Si3N4(vs), Gd20N4Si12O48(m), Gd2Si3O3N4(vw)
    16β-Si3N4(vs), Gd20N4Si12O48(m), Gd2Si3O3N4(w)
    Y2O34β-Si3N4(vs), Y20N4Si12O48(m), Y2Si3O3N4(w)
    16β-Si3N4(vs), Y20N4Si12O48(m), Y2Si3O3N4(w)
    Yb2O34β-Si3N4(vs), Yb2Si2N2O7(s)
    16β-Si3N4(vs), Yb2Si2N2O7(s)
    Sc2O34β-Si3N4(vs), Sc2SiO5(vw)
    16β-Si3N4(vs), Sc2SiO5(vw)
    *注:vs为非常强,s为强,m为中等,w为弱,vw为非常弱
    下载: 导出CSV

    表  3  不同稀土氧化物烧结助剂对氮化硅陶瓷性能的影响[29]

    Table  3.   Properties of the Si3N4 ceramics with the different sintering additives[29]

    烧结助剂离子半径 / nm烧结时间 / h密度 / (g·cm−3)热导率 / (W·m−1·K−1)晶格氧质量分数 / %
    平行垂直
    La2O30.10643.3528.131.60.279±0.037
    163.3351.164.90.116±0.006
    Nd2O30.10043.3964.181.60.094±0.005
    163.3872.297.90.092±0.013
    Gd2O30.09443.4278.7100.70.076±0.002
    163.4281.6106.90.069±0.013
    Y2O30.08943.2582.9104.60.076±0.001
    163.2882.7105.80.063±0.002
    Yb2O30.08643.4686.1115.00.061±0.002
    163.4488.6114.70.080±0.006
    Sc2O30.07343.2184.9100.80.085±0.004
    163.1989.6106.30.077±0.003
    下载: 导出CSV

    表  4  添加不同种类稀土氢化物为烧结助剂制备得到氮化硅陶瓷的热导率

    Table  4.   Thermal conductivity of Si3N4 doped with the different rare-earth hydride as the sintering additives

    烧结助剂烧结时间 / h热导率 / (W·m−1·K−1)
    YH2[52]4101.80
    12123.00
    24131.60
    GdH2[54]498.07
    12119.07
    24134.90
    YbH2[55]4100.20
    12118.90
    24131.15
    下载: 导出CSV
  • [1] Shen S F, Li Q. Research on the development of key materials for 5G communication technology. Scitech China, 2019(8): 50

    申胜飞, 李茜. 5G通信技术关键材料发展研究. 科技中国, 2019(8): 50
    [2] James P. Thermal challenges facing new-generation light-emitting diodes (LEDs) for lighting applications // International Symposium on Optical Science and Technology. Seattle, 2002: 215
    [3] Cheng H, Chen M X, Luo X B, et al. Ceramic substrate for electronic packaging. Adv Ceram, 2019, 40(4): 265

    程浩, 陈明祥, 罗小兵, 等. 电子封装陶瓷基板. 现代技术陶瓷, 2019, 40(4): 265
    [4] Lu Q, Liu Y K, Qiao Z Z, et al. Reserach status and new progress of ceramic substrate. Semicond Technol, 2021, 46(4): 257

    陆琪, 刘英坤, 乔志壮, 等. 陶瓷基板研究现状及新进展. 半导体技术, 2021, 46(4): 257
    [5] Chen H B, Wang Z L, Pang X M, et al. Development trend of high power and reliable electronic packaging. Vacuum Electron, 2018(4): 8

    陈寰贝, 王子良, 庞学满, 等. 大功率高可靠电子封装研究发展趋势. 真空电子技术, 2018(4): 8
    [6] Slack G A, Austerman S B. Thermal conductivity of BeO single crystals. J Appl Phys, 1971, 42(12): 4713 doi: 10.1063/1.1659844
    [7] Li S P. Research and development of bongding copper to Si3N4 ceramic substrates uesd in IGBT module. Equip Electron Prod Manuf, 2019(1): 1 doi: 10.3969/j.issn.1004-4507.2019.01.001

    李少鹏. 新一代IGBT模块用高可靠氮化硅陶瓷覆铜基板研究进展. 电子工业专用设备, 2019(1): 1 doi: 10.3969/j.issn.1004-4507.2019.01.001
    [8] IEA. Global EV outloook 2022. IEA(2022-05). https://www.iea.org/reports/global-ev-outlook-2022
    [9] Hardie D, Jack K H. Crystal structures of silicon nitride. Nature, 1957, 180: 332 doi: 10.1038/180332a0
    [10] Riley F L. Silicon nitride and related materials. J Am Ceram Soc, 2000, 83(2): 245 doi: 10.1111/j.1151-2916.2000.tb01182.x
    [11] Haggerty J S, Lightfoot A. Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing // Proceedings of the 19th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures—A: Ceramic Engineering and Science Proceedings. Cocoa Beach, 1995: 475
    [12] Hirosaki N, Ogata S, Kocer C, et al. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β-Si3N4. Phys Rev B, 2002, 65(13): 134110 doi: 10.1103/PhysRevB.65.134110
    [13] Slack G A. Nonmetallic crystals with high thermal conductivity. J Phys Chem Solids, 1973, 34: 321 doi: 10.1016/0022-3697(73)90092-9
    [14] Jack K H, Wilison W I. Ceramics based on the Si−Al−O−N and related systems. Nat Phys Sci, 1972, 238(80): 28 doi: 10.1038/physci238028a0
    [15] Oyama Y. Solid solution in the ternary system, Si3N4−AlN−Al2O3. Jpn J Appl Phys, 1972, 11: 760 doi: 10.1143/JJAP.11.760
    [16] Kusano D, Hyuga H, Zhou Y, et al. Effect of aluminum content on mechanical properties and thermal conductivities of sintered reaction-bonded silicon nitride. Int J Appl Ceram Technol, 2014, 11(3): 534 doi: 10.1111/ijac.12035
    [17] Zhou Y, Zhu X W, Hirao K, et al. Sintered reaction-bonded silicon nitride with high thermal conductivity and high strength. Int J Appl Ceram Technol, 2008, 5(2): 119 doi: 10.1111/j.1744-7402.2008.02187.x
    [18] Uskoković D P, Palmour H, Spriggs R M. Science of Sintering. New York: Plenum Press, 1989
    [19] Tanaka I, Pezzotti G, Okamoto T, et al. Hot isostatic press sintering and properties of silicon nitride without additives. J Am Ceram Soc, 1989, 72(9): 1656 doi: 10.1111/j.1151-2916.1989.tb06298.x
    [20] German R M, Suri P, Park S J. Review: liquid phase sintering. J Mater Sci, 2009, 44: 1 doi: 10.1007/s10853-008-3008-0
    [21] Pezzotti G, Ota K I, Kleebe H J. Grain-boundary relaxation in high-purity silicon nitride. J Am Ceram Soc, 1996, 79(9): 2237 doi: 10.1111/j.1151-2916.1996.tb08968.x
    [22] Wang C M, Ruhle M, Riley F L, et al. Silicon nitride crystal structure and observations of lattice defects. J Mater Sci, 1996, 31: 5281 doi: 10.1007/BF01159294
    [23] Okamoto Y, Hirosaki N, Ando M, et al. Effect of sintering additive composition on the thermal conductivity of silicon nitride. J Mater Res, 1998, 13(12): 3473 doi: 10.1557/JMR.1998.0474
    [24] Brinker C J, Haaland D M, Loehman R E. Oxynitride glasses prepared from gels and melts. J Non-Cryst Solids, 1983, 56: 179 doi: 10.1016/0022-3093(83)90465-9
    [25] Negita K. Effective sintering aids for Si3N4 ceramics. J Mater Sci Lett, 1985, 4: 755 doi: 10.1007/BF00726981
    [26] Negita K. Ionic radii and electronegativities of effective sintering aids for Si3N4 ceramics. J Mater Sci Lett, 1985, 4: 417 doi: 10.1007/BF00719733
    [27] Lange F F. Phase relations in the system Si3N4−SiO2−MgO and their interrelation with strength and oxidation. J Am Ceram Soc, 1977, 61(1-2): 53
    [28] Yeheskel O, Gefen Y, Talianker M. Hot isostatic pressing of Si3N4 with Y2O3 additions. J Mater Sci, 1984, 19: 745 doi: 10.1007/BF00540444
    [29] Kitayama M, Hirao K, Watari K, et al. Thermal conductivity of β-Si3N4: III, effect of rare-earth (RE=La, Nd, Gd, Y, Yb, and Sc) oxide additives. J Am Ceram Soc, 2001, 84(2): 353 doi: 10.1111/j.1151-2916.2001.tb00662.x
    [30] Kitayama M, Hirao K, Kanzaki S. Effect of rare earth oxide additives on the phase transformation rates of Si3N4. J Am Ceram Soc, 2006, 89(8): 2612 doi: 10.1111/j.1551-2916.2006.01106.x
    [31] Satet R L, Hoffmann M J. Grain growth anisotropy of β-silicon nitride in rare-earth doped oxynitride glasses. J Eur Ceram Soc, 2004, 24(12): 3437 doi: 10.1016/j.jeurceramsoc.2003.10.034
    [32] Kitayama M, Hirao K, Toriyama M, et al. Thermal conductivity of β-Si3N4: I, effects of various microstructural factors. J Am Ceram Soc, 1999, 82(11): 3105 doi: 10.1111/j.1151-2916.1999.tb02209.x
    [33] Kitayama M, Hirao K, Tsuge A, et al. Thermal conductivity of β-Si3N4: II, effect of lattice oxygen. J Am Ceram Soc, 2000, 83(8): 1985 doi: 10.1111/j.1151-2916.2000.tb01501.x
    [34] Kitayama M, Hirao K, Tsuge A, et al. Oxygen content in β-Si3N4 crystal lattice. J Am Ceram Soc, 1999, 82(11): 3263 doi: 10.1111/j.1151-2916.1999.tb02238.x
    [35] Wang C M, Pan X Q, Hoffmann M J, et al. Grain boundary films in rare-earth-glass-based silicon nitride. J Am Ceram Soc, 1996, 79(3): 788 doi: 10.1111/j.1151-2916.1996.tb07946.x
    [36] Liu W, Tong W X, Lu X X, et al. Effects of different types of rare earth oxide additives on the properties of silicon nitride ceramic substrates. Ceram Int, 2019, 45(9): 12436 doi: 10.1016/j.ceramint.2019.03.176
    [37] Hirosaski N, Okada A, Matoba K. Sintering of Si3N4 with the addition of rare-earth oxides. J Am Ceram Soc, 1988, 71(3): 144
    [38] Kubaschewski O, Alock C B. Metallurgical Thermochemistry. 5th ed. London: Pergamon, 1979
    [39] Oyama Y, Kamigaito O. A study on the sintered Si3N4−MgO system. J Ceram Soc Jpn, 1973, 81(7): 290
    [40] Gauckler L J, Lukas H L, Tien T Y. Crystal chemistry of β-Si3N4 solid solutions containing metal oxides. Mater Res Bull, 1976, 11: 503 doi: 10.1016/0025-5408(76)90231-2
    [41] Tsuge A, Kudo H, Komeya K. Reaction of Si3N4 and Y2O3 in hot-pressing. J Am Ceram Soc, 1974, 57(6): 269
    [42] Lin Y B, Ning X S, Zhou H P, et al. Study on the thermal conductivity of silicon nitride ceramics with magnesia and yttria as sintering additives. Mater Lett, 2002, 57: 15 doi: 10.1016/S0167-577X(02)00690-0
    [43] Go S I, Li Y S, Ko J W, et al. Microstructure and thermal conductivity of sintered reaction-bonded silicon nitride: the particle size effects of MgO additive. Adv Mater Sci Eng, 2018, 2018: 4263497
    [44] Liu W, Tong W X, He R X, et al. Effect of the Y2O3 additive concentration on the properties of a silicon nitride ceramic substrate. Ceram Int, 2016, 42(16): 18641 doi: 10.1016/j.ceramint.2016.09.001
    [45] Zhou Y, Hyuga H, Kusano D, et al. Effects of yttria and magnesia on densification and thermal conductivity of sintered reaction-bonded silicon nitrides. J Am Ceram Soc, 2019, 102(4): 1579 doi: 10.1111/jace.16015
    [46] Zhou Y, Hyuga H, Kusano D, et al. A tough silicon nitride ceramic with high thermal conductivity. Adv Mater, 2011, 23(39): 4563 doi: 10.1002/adma.201102462
    [47] Hayashi H, Hirao K, Toriyama M, et al. MgSiN2 addition as a means of increasing the thermal conductivity of β-silicon nitride. J Am Ceram Soc, 2001, 84(12): 3060 doi: 10.1111/j.1151-2916.2001.tb01141.x
    [48] Lee H M, Lee E B, Kim D L, et al. Comparative study of oxide and non-oxide additives in high thermal conductive and high strength Si3N4 ceramics. Ceram Int, 2016, 42(15): 17466 doi: 10.1016/j.ceramint.2016.08.051
    [49] Zhang J, Cui W, Li F, et al. Effects of MgSiN2 addition and post-annealing on mechanical and thermal properties of Si3N4 ceramics. Ceram Int, 2020, 46(10): 15719 doi: 10.1016/j.ceramint.2020.03.097
    [50] Jiang G J, Xu J Y, Shen H, et al. Fabrication of silicon nitride ceramics with magnesium silicon nitride and yttrium oxide as sintering additives. Adv Mater Res, 2010, 177: 235 doi: 10.4028/www.scientific.net/AMR.177.235
    [51] Zhu X W, Hayashi H, Zhou Y, et al. Influence of additive composition on thermal and mechanical properties of β–Si3N4 ceramics. J Mater Res, 2004, 19(11): 3270 doi: 10.1557/JMR.2004.0416
    [52] Wang W D, Yao D X, Liang H Q, et al. Effect of in-situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics. J Eur Ceram Soc, 2020, 40(15): 5316 doi: 10.1016/j.jeurceramsoc.2020.06.005
    [53] Wang W D, Yao D X, Liang H Q, et al. Improved thermal conductivity of β-Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive. J Am Ceram Soc, 2020, 103(10): 5567 doi: 10.1111/jace.17271
    [54] Wang W D, Yao D X, Liang H Q, et al. Improved thermal conductivity of β-Si3N4 ceramics through the modification of the liquid phase by using GdH2 as a sintering additive. Ceram Int, 2021, 47(4): 5631 doi: 10.1016/j.ceramint.2020.10.148
    [55] Wang W D, Chen H B, Li S S, et al. Preparation of silicon nitride with high thermal conductivity and high flexural strength using YbH2-MgO as sintering additive. J Inorg Mater, 2021, 36(9): 959 doi: 10.15541/jim20200705

    王为得, 陈寰贝, 李世帅, 等. 以YbH2-MgO体系为烧结助剂制备高热导率高强度氮化硅陶瓷. 无机材料学报, 2021, 36(9): 959 doi: 10.15541/jim20200705
    [56] Liang H Q, Wang W D, Zuo K H, et al. Effect of LaB6 addition on mechanical properties and thermal conductivity of silicon nitride ceramics. Ceram Int, 2020, 46(11): 17776 doi: 10.1016/j.ceramint.2020.04.083
    [57] Bing B, Fu T, Ning X S. Thermal conductivity and mechanical property of Si3N4 ceramics sintered with CeF3/LaF3 additives. Adv Mater Res, 2010, 105-106: 171 doi: 10.4028/www.scientific.net/AMR.105-106.171
    [58] Li Y S, Kim H N, Wu H B, et al. Enhanced thermal conductivity in Si3N4 ceramic with the addition of Y2Si4N6C. J Am Ceram Soc, 2018, 101(9): 4128 doi: 10.1111/jace.15544
    [59] Qin M L, Lu H F, Wu H Y, et al. Powder injection molding of complex-shaped aluminium nitride ceramic with high thermal conductivity. J Eur Ceram Soc, 2019, 39(4): 952 doi: 10.1016/j.jeurceramsoc.2018.11.037
    [60] Kurokawa Y, Utsumi K, Takamizawa H. Development and microstructural characterization of high-thermal-conductivity aluminum nitride ceramics. J Am Ceram Soc, 1988, 71(7): 588 doi: 10.1111/j.1151-2916.1988.tb05924.x
    [61] He Y Q, Li X Y, Zhang J X, et al. Method for fabricating microwave absorption ceramics with high thermal conductivity. J Eur Ceram Soc, 2018, 38(2): 501 doi: 10.1016/j.jeurceramsoc.2017.09.042
    [62] Li Y S, Kim H N, Wu H B, et al. Improved thermal conductivity of sintered reaction-bonded silicon nitride using a BN/graphite powder bed. J Eur Ceram Soc, 2017, 37(15): 4483 doi: 10.1016/j.jeurceramsoc.2017.05.045
    [63] Hu F, Zhu T B, Xie Z P, et al. Elimination of grain boundaries and its effect on the properties of silicon nitride ceramics. Ceram Int, 2020, 46(8): 12606 doi: 10.1016/j.ceramint.2020.02.024
    [64] Li Y S, Kim H N, Wu H B, et al. Enhanced thermal conductivity in Si3N4 ceramic by addition of a small amount of carbon. J Eur Ceram Soc, 2019, 39(2-3): 157 doi: 10.1016/j.jeurceramsoc.2018.10.006
    [65] Dow H S, Kim W S, Lee J W. Thermal and electrical properties of silicon nitride substrates. AIP Adv, 2017, 7(9): 095022 doi: 10.1063/1.4996314
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  2565
  • HTML全文浏览量:  165
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 刊出日期:  2024-02-28

目录

    /

    返回文章
    返回