喷雾热解法制备非晶型TiO2@Ag/AgBr复合光催化剂的性能

伍锐 鲍瑞 刘鹏 易健宏 曲俊励

伍锐, 鲍瑞, 刘鹏, 易健宏, 曲俊励. 喷雾热解法制备非晶型TiO2@Ag/AgBr复合光催化剂的性能[J]. 粉末冶金技术, 2023, 41(3): 193-198, 217. doi: 10.19591/j.cnki.cn11-1974/tf.2021070010
引用本文: 伍锐, 鲍瑞, 刘鹏, 易健宏, 曲俊励. 喷雾热解法制备非晶型TiO2@Ag/AgBr复合光催化剂的性能[J]. 粉末冶金技术, 2023, 41(3): 193-198, 217. doi: 10.19591/j.cnki.cn11-1974/tf.2021070010
WU Rui, BAO Rui, LIU Peng, YI Jianhong, QU Junli. Performance of amorphous TiO2@Ag/AgBr composite photocatalyst prepared by spray pyrolysis[J]. Powder Metallurgy Technology, 2023, 41(3): 193-198, 217. doi: 10.19591/j.cnki.cn11-1974/tf.2021070010
Citation: WU Rui, BAO Rui, LIU Peng, YI Jianhong, QU Junli. Performance of amorphous TiO2@Ag/AgBr composite photocatalyst prepared by spray pyrolysis[J]. Powder Metallurgy Technology, 2023, 41(3): 193-198, 217. doi: 10.19591/j.cnki.cn11-1974/tf.2021070010

喷雾热解法制备非晶型TiO2@Ag/AgBr复合光催化剂的性能

doi: 10.19591/j.cnki.cn11-1974/tf.2021070010
基金项目: 国家自然科学基金资助项目(52064032, 52174345);云南省科技厅重大科技资助项目(202202AG050004)
详细信息
    通讯作者:

    E-mail: baorui@kmust.edu.cn (鲍瑞)

    yijianhong@kmust.edu.cn (易健宏)

  • 中图分类号: TB331; O643.36

Performance of amorphous TiO2@Ag/AgBr composite photocatalyst prepared by spray pyrolysis

More Information
  • 摘要: 以TiCl4为前体,通过喷雾热解法制备出非晶型TiO2;以AgNO3为银源,采用水包油自组装法合成TiO2@Ag/AgBr复合光催化剂。利用X射线衍射仪和X射线光电子能谱仪分析了样品的微观结构和价态,采用扫描电镜和透射电镜观察了样品的表面形貌,使用紫外可见漫反射光谱仪、荧光光谱仪和电化学阻抗谱对样品的光吸收范围和电子复合行为进行表征。通过在自然光照条件下降解甲基橙的实验研究了复合材料的光催化性能,并探讨了不同Ag/AgBr负载量对光催化性能的影响。结果表明:制备的TiO2为直径小于500 nm的非晶型纳米级球形颗粒,Ag/AgBr均匀的负载在其表面。制备的TiO2@Ag/AgBr复合光催化剂均表现出良好的光催化活性,其中最佳负载量的TiO2@Ag/AgBr复合光催化剂对甲基橙降解效率可达到91%。
  • 图  1  非晶型TiO2和实验制备的复合光催化剂X射线衍射图谱

    Figure  1.  XRD patterns of ATD with the different AgNO3 dosage

    图  2  ATD-40的X射线光电子能谱:(a)全谱;(b)Ag-3d

    Figure  2.  XPS spectra of ATD-40: (a) survey; (b) Ag-3d

    图  3  不同放大倍数下的非晶型TiO2扫描电子显微形貌

    Figure  3.  SEM images of ATD at different magnification

    图  4  TiO2@Ag/AgBr透射电镜显微形貌:(a)ATD-20;(b)ATD-40;(c)ATD-60;(d)ATD-40局部放大;(e)ATD-40局部放大

    Figure  4.  TEM images of TiO2@Ag/AgBr: (a) ATD-20; (b) ATD-40; (c) ATD-60; (d) enlarged view of ATD-40; (e) enlarged view of ATD-40

    图  5  TiO2@Ag/AgBr复合材料光学性能:(a)ATD和ATD-40紫外可见漫反射图谱;(b)ATD和ATD-40光致发光光谱;(c)ATD和ATD-40电化学阻抗谱;(d)不同样品在模拟太阳光照射下甲基橙光降解曲线;(e)不同样品甲基橙降解动力学曲线;(f)ATD-40重复降解甲基橙光催化实验

    Figure  5.  Optical properties of the TiO2@Ag/AgBr composites: (a) UV-Vis DRS of ATD and ATD-40; (b) PL spectra of ATD and ATD-40; (c) EIS of ATD and ATD-40; (d) the photodegradation curves of MO in different samples under the simulated sunlight; (e) the kinetic curves of MO degradation in the different samples; (f) the photocatalytic tests of the repeated degradation of MO by ATD-40

    图  6  光催化反应机理示意图

    Figure  6.  Schematic diagram of the photocatalytic reaction mechanism

  • [1] Espíndola J C, Cristóvão R O, Santos S G S, et al. Intensification of heterogeneous TiO2 photocatalysis using the NETmix mili-photoreactor under microscale illumination for oxytetracycline oxidation. Sci Total Environ, 2019, 681: 467 doi: 10.1016/j.scitotenv.2019.05.066
    [2] Meng A, Zhang L, Cheng B, et al. Dual cocatalysts in TiO2 photocatalysis. Adv Mater, 2019, 31(30): 1807660
    [3] Ceng X F, Wang M H, Lu Y L, et al. Synthesis and enhanced photocatalytic activity of TiO2 pillared graphene nanocomposites. Powder Metall Technol, 2018, 36(2): 130

    曾雄丰, 王梦幻, 路彦丽, 等. TiO2柱撑石墨烯复合材料的制备及光催化性能. 粉末冶金技术, 2018, 36(2): 130
    [4] Guo Q, Zhou C Y, Ma Z B, et al. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater, 2019, 31(50): 1901997 doi: 10.1002/adma.201901997
    [5] Liu G H, Zha W S, Chen X L, et al. Study on preparation and photocatalytic properties of M/TiO2 composite film by two-step mechanical ball milling. Powder Metall Technol, 2021, 39(1): 49

    刘改华, 查五生, 陈秀丽, 等. 两步机械球磨法制备M/TiO2复合薄膜及光催化性能研究. 粉末冶金技术, 2021, 39(1): 49
    [6] Abou Asi M, He C, Su M H, et al. Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catal Today, 2011, 175(1): 256 doi: 10.1016/j.cattod.2011.02.055
    [7] Gao W Q, Zhang X F, Su X W, et al. Construction of bimetallic Pd‒Ag enhanced AgBr/TiO2 hierarchical nanostructured photocatalytic hybrid capillary tubes and devices for continuous photocatalytic degradation of VOCs. Chem Eng J, 2018, 346: 77 doi: 10.1016/j.cej.2018.04.017
    [8] Katal R, Salehi M, Davood Abadi Farahani M H, et al. Preparation of a new type of black TiO2 under a vacuum atmosphere for sunlight photocatalysis. ACS Appl Mater Interfaces, 2018, 10(41): 35316 doi: 10.1021/acsami.8b14680
    [9] Xing Z P, Zhang J Q, Cui J Y, et al. Recent advances in floating TiO2-based photocatalysts for environmental application. Appl Catal B, 2018, 225: 452 doi: 10.1016/j.apcatb.2017.12.005
    [10] Wu J M, Shih H C, Wu W T, et al. Thermal evaporation growth and the luminescence property of TiO2 nanowires. J Cryst Growth, 2005, 281(2-4): 384 doi: 10.1016/j.jcrysgro.2005.04.018
    [11] Ali H M, Babar H, Shah T R, et al. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci, 2018, 8(4): 587 doi: 10.3390/app8040587
    [12] Dong R F, Tian B Z, Zeng C Y, et al. Eco-friendly synthesis and photocatalytic activity of uniform cubic Ag@AgCl plasmonic photocatalyst. J Phys Chem C, 2013, 117(1): 213 doi: 10.1021/jp311970k
    [13] Gan W, Zhang J, Niu H H, et al. Fabrication of Ag/AgBr/TiO2 composites with enhanced solar-light photocatalytic properties. Colloids Surf A, 2019, 583: 123968 doi: 10.1016/j.colsurfa.2019.123968
    [14] Wang X P, Tang Y X, Chen Z, et al. Highly stable heterostructured Ag-AgBr/TiO2 composite: a bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria. J Mater Chem, 2012, 22(43): 23149 doi: 10.1039/c2jm35503e
    [15] Shi Y Y, Yan Z, Xu Y T, et al. Visible-light-driven AgBr–TiO2-Palygorskite photocatalyst with excellent photocatalytic activity for tetracycline hydrochloride. J Cleaner Prod, 2020, 277: 124021 doi: 10.1016/j.jclepro.2020.124021
    [16] Mao S, Bao R, Yi J H, et al. Preparation and photocatalytic properties of Ag/AgCl composite powders. Powder Metall Technol, 2017, 35(2): 136 doi: 10.3969/j.issn.1001-3784.2017.02.010

    毛帅, 鲍瑞, 易健宏, 等. Ag/AgCl复合粉末的制备及光催化性能研究. 粉末冶金技术, 2017, 35(2): 136 doi: 10.3969/j.issn.1001-3784.2017.02.010
    [17] Wu J M, Zhao Q E. Activation of carbon cloth and concurrent precipitation of titania nanowires for enhanced adsorption and photocatalysis performance. Appl Surf Sci, 2020, 527: 146779 doi: 10.1016/j.apsusc.2020.146779
    [18] Xue C, Yan X Q, Ding S J, et al. Monodisperse Ag–AgBr nanocrystals anchored on one-dimensional TiO2 nanotubes with efficient plasmon-assisted photocatalytic performance. RSC Adv, 2016, 6(73): 68653 doi: 10.1039/C6RA13269C
  • 加载中
图(6)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  61
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回