金刚石表面改性及基体合金化对金刚石/铜复合材料导热性能的影响

陈冰威 韩金江 余威 朱振东 栗正新 王辉

陈冰威, 韩金江, 余威, 朱振东, 栗正新, 王辉. 金刚石表面改性及基体合金化对金刚石/铜复合材料导热性能的影响[J]. 粉末冶金技术, 2022, 40(3): 258-266. doi: 10.19591/j.cnki.cn11-1974/tf.2021070011
引用本文: 陈冰威, 韩金江, 余威, 朱振东, 栗正新, 王辉. 金刚石表面改性及基体合金化对金刚石/铜复合材料导热性能的影响[J]. 粉末冶金技术, 2022, 40(3): 258-266. doi: 10.19591/j.cnki.cn11-1974/tf.2021070011
CHEN Bing-wei, HAN Jin-jiang, YU Wei, ZHU Zhen-dong, LI Zheng-xin, WANG Hui. Effects of diamond surface modification and matrix alloying on the thermal conductivity of copper/diamond composites[J]. Powder Metallurgy Technology, 2022, 40(3): 258-266. doi: 10.19591/j.cnki.cn11-1974/tf.2021070011
Citation: CHEN Bing-wei, HAN Jin-jiang, YU Wei, ZHU Zhen-dong, LI Zheng-xin, WANG Hui. Effects of diamond surface modification and matrix alloying on the thermal conductivity of copper/diamond composites[J]. Powder Metallurgy Technology, 2022, 40(3): 258-266. doi: 10.19591/j.cnki.cn11-1974/tf.2021070011

金刚石表面改性及基体合金化对金刚石/铜复合材料导热性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021070011
详细信息
    通讯作者:

    E-mail: zhengxin_li@haut.edu.cn

  • 中图分类号: TB333

Effects of diamond surface modification and matrix alloying on the thermal conductivity of copper/diamond composites

More Information
  • 摘要: 以Pr6O11为刻蚀剂表面粗糙化处理金刚石颗粒,采用放电等离子烧结技术制备了金刚石/铜(硼)复合材料(金刚石体积分数为60.0%,硼体积分数为0.3%),通过试验、热流密度模拟和声子谱计算研究了金刚石表面改性及基体硼合金化对金刚石/铜复合材料导热性能的影响。结果表明,粗糙化的金刚石界面增加了接触面积;在基体中添加硼元素,复合材料在烧结后出现B4C相,B4C相的形成改善了金刚石–铜两相界面结合状态。金刚石粗糙化与基体合金化两者的共同作用有效减少了界面热阻,优化了热通量传递的效率,提高了复合材料的导热性能。金刚石/铜复合材料热导率从421 W·m−1·K−1提高到了598 W·m−1·K−1,提升了近42%。
  • 图  1  900 ℃刻蚀后金刚石表面形貌:(a)、(c)(111)面;(b)、(d)(100)面

    Figure  1.  Surface morphology of the diamond etched at 900 ℃: (a), (c) (111) face; (b), (d) (100) face

    图  2  900 ℃刻蚀后金刚石表面原子力显微形貌:(a)(111)面;(b)(100)面

    Figure  2.  AFM images of the diamond surface etched at 900 ℃: (a) (111) face; (b) (100) face

    图  3  刻蚀前后金刚石表面物相分析:(a)X射线衍射图谱;(b)拉曼图谱

    Figure  3.  Phase analysis of the diamond surface before and after etching: (a) XRD pattern; (b) Raman spectra

    图  4  金刚石(111)面刻蚀原理示意图:(a)脱落原子排布平面示意图;(b)脱落原子排布立体示意图

    Figure  4.  Schematic diagram of the diamond etching principle in (111) face: (a) plan diagram of shedding atoms; (b) stereoscopic diagram of shedding atoms

    图  5  金刚石(100)面刻蚀原理示意图:(a)脱落原子排布平面示意图;(b)脱落原子排布立体示意图

    Figure  5.  Schematic diagram of the diamond etching principle in (100) face: (a) plan diagram of shedding atoms; (b) stereoscopic diagram of shedding atoms

    图  6  刻蚀前后金刚石/铜复合材料界面结合扫描电子显微形貌:(a)、(b)原始金刚石/铜;(c)、(d)刻蚀后金刚石/铜;(e)、(f)刻蚀后金刚石/铜(硼)

    Figure  6.  SEM images of the diamond/copper composite interface bonding before and after etching: (a), (b) raw diamond/copper; (c), (d) diamond/copper after etching; (e), (f) diamond/copper(boron) after etching

    图  7  金刚石/铜复合材料X射线衍射图谱

    Figure  7.  XRD patterns of the diamond/copper composites

    图  8  刻蚀前后金刚石/铜复合材料热导率

    Figure  8.  Thermal conductivity of the diamond/copper composites before and after etching

    图  9  刻蚀后金刚石/铜复合材料热流密度模拟:(a)(111)面;(b)(100)面

    Figure  9.  Simulation on the heat flux density of the diamond/copper composites after etching: (a) (111) face; (b) (100) face

    图  10  金刚石–铜(a)和金刚石–B4C(b)声子谱

    Figure  10.  Diamond–copper (a) and diamond–B4C (b) phonon spectrum

    图  11  金刚石/铜复合材料导热原理

    Figure  11.  Heat conduction principle of the diamond/copper composites

  • [1] Xiao C J, Chen Y G, Li X L, et al. Method and mechanism analysis of improving the holding force between Ni-coated diamond and Cu-matrix bonding. Powder Metall Technol, 2020, 38(1): 25 doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.004

    肖长江, 陈贻光, 栗晓龙, 等. 镀Ni金刚石与铜基结合剂间把持力的提高方法和机理分析. 粉末冶金技术, 2020, 38(1): 25 doi: 10.19591/j.cnki.cn11-1974/tf.2020.01.004
    [2] Chang G, Sun F Y, Wang L H, et al. Regulated interfacial thermal conductance between Cu and diamond by a TiC interlayer for thermal management applications. ACS Appl Mater Interfaces, 2019, 11(29): 26507 doi: 10.1021/acsami.9b08106
    [3] Chang G, Sun F Y, Duan J L, et al. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond. Acta Mater, 2018, 160: 235 doi: 10.1016/j.actamat.2018.09.004
    [4] Cheng Z, Bai T Y, Shi J L, et al. Tunable thermal energy transport across diamond membranes and diamond-Si interfaces by nanoscale graphoepitaxy. ACS Appl Mater Interfaces, 2019, 11(20): 18517 doi: 10.1021/acsami.9b02234
    [5] Zhang L, Wei Q P, An J J, et al. Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management. Chem Eng J, 2020, 380: 122551 doi: 10.1016/j.cej.2019.122551
    [6] Chen L, Chen S T, Hou Y. Understanding the thermal conductivity of diamond/copper composite by first-principles calculations. Carbon, 2019, 148: 249 doi: 10.1016/j.carbon.2019.03.051
    [7] Merabia S, Termentzidis K. Thermal boundary conductance across rough interfaces probed by molecular dynamics. Phys Rev B, 2014, 89: 054309 doi: 10.1103/PhysRevB.89.054309
    [8] Lee E, Zhang T, Hu M, et al. Thermal boundary conductance enhancement using experimentally achievable nanostructured interfaces-analytical study combined with molecular dynamics simulation. Phys Chem Chem Phys, 2016, 18(25): 16794 doi: 10.1039/C6CP01927G
    [9] Zhang C, Wang R C, Peng C Q, et al. Influence of titanium coating on the microstructure and thermal behavior of Dia. /Cu composites. Diamond Relat Mater, 2019, 97: 107449 doi: 10.1016/j.diamond.2019.107449
    [10] Wu X Z, Li L Y, Zhang W, et al. Effect of surface roughening on the interfacial thermal conductance of diamond/copper composites. Diamond Relat Mater, 2019, 98: 107467 doi: 10.1016/j.diamond.2019.107467
    [11] Wu X Z, Wan D Q, Zhang W, et al. Constructing efficient heat transfer channels at the interface of diamond/Cu composites. Compos Interfaces, 2021, 28(6): 625 doi: 10.1080/09276440.2020.1795466
    [12] Li J W, Wang X T, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scr Mater, 2015, 109: 72 doi: 10.1016/j.scriptamat.2015.07.022
    [13] Chung C Y, Lee M T, Tsai M Y, et al. High thermal conductive diamond/Cu–Ti composites fabricated by pressureless sintering technique. Appl Thermal Eng, 2014, 69(1-2): 208 doi: 10.1016/j.applthermaleng.2013.11.065
    [14] Ciupinski Ł, Kruszewski M J, Grzonka J, et al. Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications. Mater Des, 2017, 120: 170 doi: 10.1016/j.matdes.2017.02.005
    [15] Li L Y, Chen X, Zhang W, et al. Characterization and formation mechanism of pits on diamond {100} face etched by molten potassium nitrite. Int J Refract Met Hard Mater, 2018, 71: 129 doi: 10.1016/j.ijrmhm.2017.11.011
    [16] Liu D, Gou L, Xu J J, et al. Investigations on etching resistance of undoped and boron doped polycrystalline diamond films by oxygen plasma etching. Vacuum, 2016, 128: 80 doi: 10.1016/j.vacuum.2016.03.012
    [17] Bai G Z, Li N, Wang X T, et al. High thermal conductivity of Cu–B/diamond composites prepared by gas pressure infiltration. J Alloys Compd, 2018, 735: 1648 doi: 10.1016/j.jallcom.2017.11.273
    [18] Fan Y M, Guo H, Xu J, et al. Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration. Int J Miner Metall Mater, 2011, 18(4): 472 doi: 10.1007/s12613-011-0465-2
    [19] Hasselman D P H, Johnson L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater, 1987, 21(6): 508 doi: 10.1177/002199838702100602
    [20] MonachonC, Weber L, Dames C. Thermal boundary conductance: a materials science perspective. Annu Rev Mater Res, 2016, 46(1): 433 doi: 10.1146/annurev-matsci-070115-031719
    [21] Liang Y L, Jiang G S. Finite element simulation of tungsten-coated diamond/copper composites. Powder Metall Technol, 2019, 37(4): 283

    梁远龙, 姜国圣. 表面镀钨金刚石/铜复合材料的有限元模拟. 粉末冶金技术, 2019, 37(4): 283
  • 加载中
图(11)
计量
  • 文章访问数:  914
  • HTML全文浏览量:  273
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-18
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回