热挤压态FGH95合金热变形特性

段继平 唐湘林 盛俊英 彭子超 王旭青 邹金文

段继平, 唐湘林, 盛俊英, 彭子超, 王旭青, 邹金文. 热挤压态FGH95合金热变形特性[J]. 粉末冶金技术, 2024, 42(1): 36-44. doi: 10.19591/j.cnki.cn11-1974/tf.2021080002
引用本文: 段继平, 唐湘林, 盛俊英, 彭子超, 王旭青, 邹金文. 热挤压态FGH95合金热变形特性[J]. 粉末冶金技术, 2024, 42(1): 36-44. doi: 10.19591/j.cnki.cn11-1974/tf.2021080002
DUAN Jiping, TANG Xianglin, SHENG Junying, PENG Zichao, WANG Xuqing, ZOU Jinwen. Hot deformation characteristics of hot extruded FGH95 superalloys[J]. Powder Metallurgy Technology, 2024, 42(1): 36-44. doi: 10.19591/j.cnki.cn11-1974/tf.2021080002
Citation: DUAN Jiping, TANG Xianglin, SHENG Junying, PENG Zichao, WANG Xuqing, ZOU Jinwen. Hot deformation characteristics of hot extruded FGH95 superalloys[J]. Powder Metallurgy Technology, 2024, 42(1): 36-44. doi: 10.19591/j.cnki.cn11-1974/tf.2021080002

热挤压态FGH95合金热变形特性

doi: 10.19591/j.cnki.cn11-1974/tf.2021080002
基金项目: 先进高温结构材料重点实验室基金资助项目(6142903190303)
详细信息
    通讯作者:

    E-mail: zoujw613@sina.com

  • 中图分类号: TF124.1

Hot deformation characteristics of hot extruded FGH95 superalloys

More Information
  • 摘要: 采用Gleeble 3800D热模拟压缩试验机系统地研究了挤压态FGH95合金在变形温度1050~1120 ℃、应变速率0.001~1.000 s−1条件下的热压缩变形行为,获得了挤压态FGH95合金的应力应变曲线,建立了挤压态FGH95合金的本构方程,并基于动态材料模型,绘制了合金的热加工图。结果表明,挤压态FGH95合金的热变形本构方程高温材料常数分别为热变形激活能Q=300.925 kJ·mol−1,常数α=0.01139 MPa−1,参数n=1.86。相较于热等静压态,挤压态合金激活能下降50%以上。根据热加工图能量耗散效率并结合微观组织分析,找到了挤压态FGH95合金的加工安全区和失稳区,提出了热加工工艺参数范围:应变速率为0.010~0.100 s−1,变形温度为1050~1120 ℃。
  • 图  1  热挤压态FGH95合金的显微组织:(a)合金光学组织;(b)晶粒组织;(c)γ′相显微形貌;(d)γ′相显微形貌

    Figure  1.  Microstructure of the hot extruded FGH95 alloys: (a) optical microstructure; (b) grain microstructure; (c) SEM images of the γ′ phases; (d) SEM images of the γ′ phases

    图  2  FGH95合金不同应变速率下真应力–真应变曲线:(a)0.001 s−1;(b)0.010 s−1;(c)0.100 s−1;(d)1.000 s−1

    Figure  2.  Stress-strain curves of the hot extruded FGH95 superalloys at the different strain rates: (a) 0.001 s−1; (b) 0.010 s−1; (c) 0.100 s−1; (d) 1.000 s−1

    图  3  挤压态FGH95合金在不同变形温度下的晶粒组织:(a)1120 ℃;(b)1100 ℃

    Figure  3.  Grain microstructures of the hot extruded FGH95 alloys at the different transformation temperatures: (a) 1120 ℃; (b) 1100 ℃

    图  4  挤压态FGH95合金在不同变形条件下的γ′相形貌:(a)、(c)1120 ℃保温3 min;(b)、(d)1120 ℃ 0.001 s−1

    Figure  4.  Microstructures of the γ′ phases in the hot extruded FGH95 alloys at the different deformation conditions: (a), (c) 1120 ℃ for 3 min; (b), (d) 1120 ℃, 0.001 s−1

    图  5  不同变形温度下应变速率和峰值应力的关系:(a)lnσ和ln$ \dot{\varepsilon } $;(b)σ和ln$ \dot{\varepsilon } $

    Figure  5.  Relationship between the maximum stress and strain rate at the different temperatures: (a) lnσ–ln$ \dot{\epsilon } $; (b) σ–ln$ \dot{\varepsilon } $

    图  6  热挤压态FGH95粉末高温合金不同变形温度下ln[sinh(ασ)]和ln$ \dot{\varepsilon } $的关系

    Figure  6.  Relationship between ln[sinh(ασ)] and ln$ \dot{\varepsilon } $ of the hot extruded FGH95 superalloys at the different temperatures

    图  7  热挤压态FGH95合金不同应变速率下ln[sinh(ασ)]和1/T的关系

    Figure  7.  Relationship between ln[sinh(ασ)] and 1/T of the hot extruded FGH95 superalloys at the different strain rates

    图  8  FGH95合金晶粒组织[2]:(a)热等静压态;(b)热挤压态

    Figure  8.  Optical microstructure of the FGH95 superalloys[2]: (a) HIP; (b) hot extruded

    图  9  热挤压态FGH95合金的功率耗散图(a)和热加工图(b)

    Figure  9.  Power dissipation map (a) and hot processing map (b) of the hot extruded FGH95 alloys

    图  10  热挤压态FGH95合金在1120 ℃不同变形速率条件下的显微组织:(a)1.000 s−1;(b)0.100 s−1;(c)0.010 s−1;(d)0.001 s−1

    Figure  10.  Optical microstructure of hot extruded FGH95 alloy at 1120 ℃ with different strain rates: (a) 1.000 s−1; (b) 0.100 s−1; (c) 0.010 s−1; (d) 0.001 s−1

    表  1  FGH95粉末高温合金化学成分(质量分数)[19]

    Table  1.   Chemical composition of the FGH95 superalloys[19] %

    CZrCrCoWMoAlTiNbBNi
    0.0600.04513.1008.1003.6003.6003.5002.6003.4000.010余量
    下载: 导出CSV

    表  2  热挤压态FGH95高温合金本构方程模型参数

    Table  2.   Calculated constants in the constitutive equation for the hot extruded FGH95 superalloys

    Q / (kJ·mol−1)α / MPa−1nA / s−1
    300.9250.011391.861.12×1010
    下载: 导出CSV
  • [1] Wang W Y, He F, Zou J W. The application and development of P/M superalloys. Aviat Maint Eng, 2002(6): 26

    汪武洋, 何峰, 邹金文. 粉末高温合金的应用与发展. 航空工程与维修, 2002(6): 26
    [2] Zou X M, Feng Y F, Zeng W H, et al. Effect of aging treatment on the behavior of room temperature tensile of P/M superalloys used for inertia friction welding joints. Power Metall Technol, 2021, 39(1): 8

    周晓明, 冯业飞, 曾维虎, 等. 时效处理对粉末高温合金惯性摩擦焊接头室温拉伸行为的影响. 粉末冶金技术, 2021, 39(1): 8
    [3] Yang J, Liu G X, Zhang J, et al. Microstructure and failure mechanism of FGH96 solid-state diffusion bonding interface. Power Metall Technol, 2021, 39(4): 9

    杨杰, 刘光旭, 张晶, 等. FGH96合金固相扩散连接界面组织与失效机制. 粉末冶金技术, 2021, 39(4): 9
    [4] Wang X Q, Zhang M C, Luo J P, et al. Thermal simulation test of AA-FGH95 superalloy. J Aeron Mater, 2016, 36(6): 9

    王旭青, 张敏聪, 罗俊鹏, 等. 氩气雾化FGH95合金的热模拟实验. 航空材料学报, 2016, 36(6): 9
    [5] Wang X Q, Luo X J. Study on microstructure and properties of complicate shape disk of FGH95 PM superalloy. J Mater Eng, 2009(Suppl 1): 61

    王旭青, 罗学军. 复杂形状FGH95粉末盘形件固溶处理组织及性能研究. 材料工程, 2009(增刊1): 61
    [6] Guo W M, Zhao M H, Dong J X, et al. Research and development in FGH95 P/M nickel based superalloy. J Mech Eng, 2013, 49(18): 38

    国为民, 赵明汉, 董建新, 等. FGH95镍基粉末高温合金的研究和展望 机械工程学报, 2013, 49(18): 38
    [7] Tian S G, Xie J, Zhou X M, et al. Microstructure and creep behavior of FGH95 nickel-base superalloy. Mater Sci Eng A, 2011, 528: 2076 doi: 10.1016/j.msea.2010.11.038
    [8] Liu M X, W H, Wang Y, et al. Hot deformation behavior and hot processing map of annealed FGH96 superalloy. Chin J Nonferrous Met, 2019, 29(11): 2561

    刘敏学, 吴宏, 王岩, 等. 退火态FGH96合金的热变形行为及热加工图. 中国有色金属学报, 2019, 29(11): 2561
    [9] Chen L, Si J Y, Liu S H, et al. Hot deformation behavior and hot processing map of extruded FGH4096 superalloy. Mater Rev, 2019, 33(12): 2047

    陈龙, 司家勇, 刘松浩, 等. 挤压态FGH4096合金的热变形行为及热加工图, 材料导报, 2019, 33(12): 2047
    [10] Li H Z, Yang L, Wang Y, et al. Hot working behavior of hot-extruded Ni–Co–Cr-based powder metallurgy superalloy. J Mater Eng, 2020, 48(9): 115

    李慧中, 杨雷, 王岩, 等. 热挤压态Ni–Co–Cr基粉末高温合金热加工行为. 材料工程, 2020, 48(9): 115
    [11] Wu H, Liu M X, Wang Y, et al. Experimental study and numerical simulation of dynamic recrystallization for a FGH96 superalloy during isothermal compression. J Mater Res Technol, 2020, 9(3): 5090 doi: 10.1016/j.jmrt.2020.03.026
    [12] Gajalappa Y, Krishnaiah A, Basanth Kumar K, et al. Flow behaviour kinetics of Inconel 600 superalloy under hot deformation using gleeble 3800. Mater Today Proceed, 2021, 45(6): 5320
    [13] Li Y J, Zhang Y, Chen Z Y, et al. Hot deformation behavior and dynamic recrystallization of GH690 nickel-based superalloy. J Alloys Compd, 2020, 847: 156507 doi: 10.1016/j.jallcom.2020.156507
    [14] Tan G, Li H Z, Wang Y, et al. Effect of Zener-Hollomon parameter on microstructure evolution of a HEXed PM nickel-based superalloy. J Alloys Compd, 2021, 874: 159889 doi: 10.1016/j.jallcom.2021.159889
    [15] Tan G, Li H Z, Wang Y, et al. Hot working characteristics of HEXed PM nickel-based superalloy during hot compression. Trans Nonferrous Met Soc China, 2020, 30(10): 2709 doi: 10.1016/S1003-6326(20)65414-0
    [16] Wang C Y, Dong Y P, Wang S Y, et al. Study on hot deformation behavior and microstructure characteristics of extruded Ni-base powder metallurgy superalloy. Forg Stamp Technol, 2014, 39(4): 126

    王超渊, 东赟鹏, 王淑云, 等. 挤压态镍基粉末高温合金热变形行为与组织研究. 锻压技术, 2014, 39(4): 126
    [17] Li H Z, Lei Y, Tan G, et al. Thermal deformation and dynamic recrystallization of a novel HEXed PM nickel-based superalloy. Mater Charact, 2020, 163: 110285 doi: 10.1016/j.matchar.2020.110285
    [18] He G, Liu F, Huang L, et al. Microstructure evolutions and nucleation mechanisms of dynamic recrystallization of a powder metallurgy Ni-based superalloy during hot compression. Mater Sci Eng A, 2016, 677: 496 doi: 10.1016/j.msea.2016.09.083
    [19] Huang G C, Liu G Q, Feng M N, et al. Effect of solution heat treatment on microstructure and properties of FGH95 alloy. Trans Mater Heat Treat, 2017, 38(7): 71

    黄国超, 刘国权, 冯敏楠, 等. 固溶热处理工艺对FGH95合金组织和性能的影响. 材料热处理学报, 2017, 38(7): 71
    [20] McQueen H J, Ryan N D. Constitutive analysis in hot working. Mater Sci Eng A, 2002, 322: 43 doi: 10.1016/S0921-5093(01)01117-0
    [21] Na Y S, Yeom J T, Park N K, et al. Simulation of microstructure for alloy 718 blade forging using 3D FEM simulation. J Alloys Compd, 2017, 693(4): 1076
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1571
  • HTML全文浏览量:  95
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-17
  • 刊出日期:  2024-02-28

目录

    /

    返回文章
    返回