PTFE/Cu材料动态压缩特性

汤雪志 王志军 张雪朋 徐永杰

汤雪志, 王志军, 张雪朋, 徐永杰. PTFE/Cu材料动态压缩特性[J]. 粉末冶金技术, 2024, 42(2): 153-158, 164. doi: 10.19591/j.cnki.cn11-1974/tf.2021080008
引用本文: 汤雪志, 王志军, 张雪朋, 徐永杰. PTFE/Cu材料动态压缩特性[J]. 粉末冶金技术, 2024, 42(2): 153-158, 164. doi: 10.19591/j.cnki.cn11-1974/tf.2021080008
TANG Xuezhi, WANG Zhijun, ZHANG Xuepeng, XU Yongjie. Dynamic compressive behavior of PTFE/Cu composite materials[J]. Powder Metallurgy Technology, 2024, 42(2): 153-158, 164. doi: 10.19591/j.cnki.cn11-1974/tf.2021080008
Citation: TANG Xuezhi, WANG Zhijun, ZHANG Xuepeng, XU Yongjie. Dynamic compressive behavior of PTFE/Cu composite materials[J]. Powder Metallurgy Technology, 2024, 42(2): 153-158, 164. doi: 10.19591/j.cnki.cn11-1974/tf.2021080008

PTFE/Cu材料动态压缩特性

doi: 10.19591/j.cnki.cn11-1974/tf.2021080008
基金项目: 山西省高校科技创新项目(2019L602);山西省基础研究计划资助项目(2021690)
详细信息
    通讯作者:

    E-mail: wzj@nuc.edu.cn

  • 中图分类号: TF124.5

Dynamic compressive behavior of PTFE/Cu composite materials

More Information
  • 摘要: 通过冷等静压和冷压烧结制备出六种不同密度的聚四氟乙烯(polytetrafluoroethylene,PTFE)/Cu复合材料,并采用霍普金森系统研究了密度和制备方法对PTFE/Cu动态力学性能影响。结果表明,冷压烧结试样在其烧结过程中发生纵向膨胀,导致密度降低,且试样表面生成一层金属膜;冷压烧结试样的动态压缩性能优于冷等静压试样;冷压烧结后的PTFE/Cu材料中PTFE晶体发育更好,对Cu颗粒包裹力更大,界面结合力更高,提升了冷压烧结PTFE/Cu材料的力学性能。
  • 图  1  PTFE/Cu试样宏观形貌

    Figure  1.  Macro morphology of the PTFE/Cu materials

    图  2  霍普金森实验系统示意图(a)和待测试样细节(b)

    Figure  2.  Schematic of the SHPB system device (a) and the details of specimens (b)

    图  3  PTFE/Cu试样X射线衍射图谱:(a)冷等静压试样;(b)冷压烧结试样

    Figure  3.  XRD results of the PTFE/Cu specimens: (a) cold isostatic pressed specimens; (b) cold press sintered specimens

    图  4  PTFE/Cu复合材料压缩试样典型宏观形貌(压缩后正反面):(a)A1;(b)A2;(c)A3;(d)B1;(e)B2;(f)B3

    Figure  4.  Typical macroappearance of the PTFE/Cu specimens after compress: (a) A1; (b) A2; (c) A3; (d) B1; (e) B2; (f) B3

    图  5  制备方法和密度对动态压缩曲线的影响:(a)应变速率-时间;(b)冷等静压试样真实应力-真实应变;(c)冷压烧结试样真实应力-真实应变

    Figure  5.  Influence of the preparation methods and density on the dynamic compression of the PTFE/Cu specimens: (a) strain rate and time; (b) relationship between the true stress and true strain of the cold isostatic pressed specimens; (c) relationship between the true stress and true strain of the cold press sintered specimens

    图  6  PTFE/Cu复合材料试样典型显微形貌:(a)A1;(b)A2;(c)A3;(d)B1;(e)B2;(f)B3

    Figure  6.  Typical SEM images of the PTFE/Cu specimens: (a) A1; (b) A2; (c) A3; (d) B1; (e) B2; (f) B3

    表  1  经冷等静压以及冷压后高温烧结制备的试样物理参数

    Table  1.   Physical parameters of the PTFE/Cu specimens prepared by cold isostatic pressing and cold press sintering

    试样编号质量 / g直径 / mm高度 / mmCu质量分数 / %理论密度 / (g·cm−3)实测密度 / (g·cm−3)是否烧结
    A12.0212.026.1537.03.02.894
    A22.3712.026.1150.53.53.418
    A32.7112.026.1960.04.03.858
    B12.05 (2.02)11.87 (12.01)6.30 (5.93)37.03.02.940 (3.010)
    B22.41 (2.38)11.97 (12.03)6.40 (5.99)50.53.53.346 (3.495)
    B32.75 (2.73)12.11 (12.00)6.71 (6.27)60.04.03.558 (3.849)
    下载: 导出CSV

    表  2  制备方法和密度对PTFE/Cu材料动态压缩特性影响

    Table  2.   Influence of the preparation methods and density on the dynamic compression properties of the PTFE/Cu specimens

    试样抗压强度 / MPa屈服强度 / MPa失效应变
    A134330.32
    A290570.29
    A376650.31
    B1154490.33
    B2232960.37
    B3146830.28
    下载: 导出CSV
  • [1] Xie T, Jiang K, Ding Y. Numerical simulation of influence of filler size on tribological properties of Cu/PTFE composites. Tribology, 2016, 36(1): 35

    解挺, 江凯, 丁亚. 填料粒径对Cu/PTFE复合材料摩擦学性能影响的数值模拟. 摩擦学学报, 2016, 36(1): 35
    [2] Yang Y M, Li W, Liu P, et al. Microstructures corrosionresistance and mechanical properties of Ni−Cu−PTFE composite coatings. J Funct Mater, 2018, 49(7): 7082

    杨玉明, 李伟, 刘平, 等. 铜掺杂Ni−P−PTFE涂层的微观结构、耐蚀性和力学性能. 功能材料, 2018, 49(7): 7082
    [3] Xia Y H. Research on Tribology Properties of PTFE Filled with Cu Composite in Both Dry and Seawater Environment [Dissertation]. Qinhuangdao: Yanshan University, 2016

    夏艳红. PTFE/Cu复合材料干/湿环境摩擦学性能研究[学位论文]. 秦皇岛: 燕山大学, 2016
    [4] Wang L F, Dong Y, Tao J, et al. Study of the mechanisms of contact electrification and charge transfer between polytetrafluoroethylene and metals. J Phys D Appl Phys, 2020, 53: 285302 doi: 10.1088/1361-6463/ab813e
    [5] Xie T, Xu Z X, Yan Z M, et al. Study on the friction and wear behaviors of Cu/PTFE self-lubricating composites. Appl Mech Mater, 2012, 130-134: 1466
    [6] Duan N Q, Gao Y H, Wang J Y, et al. The properties of the sintered copper powder liner. J Wuhan Univ Technol Mater Sci, 2014, 29(2): 269 doi: 10.1007/s11595-014-0906-7
    [7] Xu Y J, Wang Z J, Wu G D, et al. Density effect of PTFE-copper powder metallurgy liner material on the perforation performance of shaped charge jets. Strength Mater, 2019, 51(4): 616 doi: 10.1007/s11223-019-00108-2
    [8] Li Y L, Yin J P, Liu T X. Experimental study on mechanical properties of modified polytetrafluoroethylene. J Meas Sci Instrum, 2015, 6(4): 390
    [9] Liu T X. Study on the Mechanical Performance and Application of PTFE/Cu Materials [Dissertation]. Taiyuan: North of China University, 2015

    刘同鑫. PTFE/Cu材料的力学性能研究及应用[学位论文]. 太原: 中北大学, 2015
    [10] Tang Q. Study on the Influence of Density to the Performance of Modified PTFE Kill Elements [Dissertation]. Taiyuan: North of China University, 2017

    唐琦. 材料密度对改性PTFE毁伤元性能影响研究[学位论文]. 太原: 中北大学, 2017
    [11] Borkowski J, Wilk Z, Koslik P, et al. Application of sintered liners for explosively formed projectile charges. Int J Impact Eng, 2018, 118: 91 doi: 10.1016/j.ijimpeng.2018.04.009
    [12] Liu Y L, Zeng Y. Mechanical behavior analysis on the compression molding process of NdFeB by different molding technology. Powder Metall Technol, 2020, 38(4): 262

    刘义伦, 曾洋. 不同成型工艺下钕铁硼模压成型过程的力学行为分析. 粉末冶金技术, 2020, 38(4): 262
    [13] Tang X Z, Wang Z J, Yin J P, et al. Effect of the fabrication technique on compressive properties of Cu-PTFE composites. Adv Mater Sci Eng, 2021, 2021: 5518172
    [14] Brown Eric N, Dattelbaum Dana M. The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE). Polymer, 2005, 46(9): 3056 doi: 10.1016/j.polymer.2005.01.061
    [15] Feng B, Fang X, Wang H X, et al. The effect of crystallinity on compressive properties of Al-PTFE. Polymers, 2016, 8(10): 356 doi: 10.3390/polym8100356
    [16] Jordan Jennifer L, Siviour Clive R, Foley Jason R. Compressive properties of extruded polytetrafluoroethylene. Polymer, 2007, 48(14): 4184 doi: 10.1016/j.polymer.2007.05.038
    [17] Zhang C G, Fan J L, Cheng H C. Effects of W content by mass on the microstructure and mechanical properties of Mo–W alloy. Powder Metall Technol, 2020, 38(1): 18

    张成功, 范景莲, 成会朝. W质量分数对Mo−W合金组织结构与力学性能的影响. 粉末冶金技术, 2020, 38(1): 18
    [18] Li C, Li N, Liu X Q, et al. Effect of WC mass fraction on the microstructure and properties of Ti(C0.7N0.3)-based cermets. Powder Metall Technol, 2018, 36(2): 100

    李朝, 李楠, 柳学全, 等. WC质量分数对Ti(C0.7N0.3)基金属陶瓷组织和性能的影响. 粉末冶金技术, 2018, 36(2): 100
    [19] Luo X L, Liu J, Hu X P. Analysis on dynamic mechanics performance of metal powders by impact loading. Powder Metall Technol, 2018, 36(2): 111

    罗晓龙, 刘军, 胡仙平. 冲击加载条件下金属粉末的动态力学性能分析. 粉末冶金技术, 2018, 36(2): 111
    [20] Xiao Y W, Xu F Y, Zheng Y F, et al. Quasi-static compression properties of cold isostatically pressed reactive materials. Trans Beijing Inst Technol, 2017, 37(4): 337

    肖艳文, 徐峰悦, 郑元枫, 等. 冷压成型活性材料准静态压缩特性. 北京理工大学学报, 2017, 37(4): 337
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  42
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回