高级检索

Al–5Ti–1B合金显微组织与细化机理

Microstructure and refinement mechanism of Al–5Ti–1B alloys

  • 摘要: 采用粉末混合+热挤压和粉末混合+气雾化+热挤压两种工艺制备了Al–5Ti–1B合金杆,研究了两种工艺制备Al–5Ti–1B合金的显微组织,并进行了晶粒细化性能评定。结果表明:两种制备工艺均可以使TiB2粒子均匀分布,并抑制TiAl3相的长大。在7050铝合金熔体中分别添加质量分数为0.2%的两种工艺制备的Al–5Ti–1B合金,添加粉末混合+热挤压工艺制备的Al–5Ti–1B合金后,7050铝合金晶粒细化效果不明显,铝合金晶粒尺寸仍达1400 μm;添加粉末混合+气雾化+热挤压工艺制备的Al–5Ti–1B合金后,7050铝合金晶粒细化效果非常好,铝合金平均晶粒尺寸仅有176 μm。根据此实验现象,对Al–5Ti–1B合金晶粒细化双重形核机理提出新的解释。

     

    Abstract: Two kinds of Al–5Ti–1B alloys were prepared by powder mixing + hot extrusion and powder mixing + gas atomization + hot extrusion, respectively. The microstructures of the Al–5Ti–1B alloys prepared by two kinds of processes were studied, and the grain refinement properties were assessed. The results show that, the TiB2 particles can be uniformly distributed and the growth of TiAl3 phase can be inhibited by these two kinds of processes. The Al–5Ti–1B alloys with the mass fraction of 0.2% are added to the melt of 7050 aluminum alloys. The grain refinement effect of the Al–5Ti–1B alloys prepared by powder mixing + hot extrusion is not obvious, and the grain size of 7050 aluminum alloys is still up to 1400 μm. The grain refinement effect of the Al–5Ti–1B alloys prepared by powder mixing+ gas atomization + hot extrusion is very good, the average grain size of 7050 aluminum alloys is only 176 μm. According to this experimental phenomenon, a new explanation for the grain refinement and double nucleation mechanism of the Al–Ti–B alloys is proposed.

     

/

返回文章
返回