高级检索

Al–5Ti–1B合金显微组织与细化机理

李洋, 郭绪强, 许磊, 历长云, 刘孝飞

李洋, 郭绪强, 许磊, 历长云, 刘孝飞. Al–5Ti–1B合金显微组织与细化机理[J]. 粉末冶金技术, 2022, 40(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090002
引用本文: 李洋, 郭绪强, 许磊, 历长云, 刘孝飞. Al–5Ti–1B合金显微组织与细化机理[J]. 粉末冶金技术, 2022, 40(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090002
LI Yang, GUO Xu-qiang, XU Lei, LI Chang-yun, LIU Xiao-fei. Microstructure and refinement mechanism of Al–5Ti–1B alloys[J]. Powder Metallurgy Technology, 2022, 40(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090002
Citation: LI Yang, GUO Xu-qiang, XU Lei, LI Chang-yun, LIU Xiao-fei. Microstructure and refinement mechanism of Al–5Ti–1B alloys[J]. Powder Metallurgy Technology, 2022, 40(3): 251-257. DOI: 10.19591/j.cnki.cn11-1974/tf.2021090002

Al–5Ti–1B合金显微组织与细化机理

基金项目: 新疆维吾尔自治区自然科学基金资助项目(2021D01A198)
详细信息
    通讯作者:

    刘孝飞: E-mail: liuxiaofei0501@163.com

  • 中图分类号: TG142.71

Microstructure and refinement mechanism of Al–5Ti–1B alloys

More Information
  • 摘要: 采用粉末混合+热挤压和粉末混合+气雾化+热挤压两种工艺制备了Al–5Ti–1B合金杆,研究了两种工艺制备Al–5Ti–1B合金的显微组织,并进行了晶粒细化性能评定。结果表明:两种制备工艺均可以使TiB2粒子均匀分布,并抑制TiAl3相的长大。在7050铝合金熔体中分别添加质量分数为0.2%的两种工艺制备的Al–5Ti–1B合金,添加粉末混合+热挤压工艺制备的Al–5Ti–1B合金后,7050铝合金晶粒细化效果不明显,铝合金晶粒尺寸仍达1400 μm;添加粉末混合+气雾化+热挤压工艺制备的Al–5Ti–1B合金后,7050铝合金晶粒细化效果非常好,铝合金平均晶粒尺寸仅有176 μm。根据此实验现象,对Al–5Ti–1B合金晶粒细化双重形核机理提出新的解释。
    Abstract: Two kinds of Al–5Ti–1B alloys were prepared by powder mixing + hot extrusion and powder mixing + gas atomization + hot extrusion, respectively. The microstructures of the Al–5Ti–1B alloys prepared by two kinds of processes were studied, and the grain refinement properties were assessed. The results show that, the TiB2 particles can be uniformly distributed and the growth of TiAl3 phase can be inhibited by these two kinds of processes. The Al–5Ti–1B alloys with the mass fraction of 0.2% are added to the melt of 7050 aluminum alloys. The grain refinement effect of the Al–5Ti–1B alloys prepared by powder mixing + hot extrusion is not obvious, and the grain size of 7050 aluminum alloys is still up to 1400 μm. The grain refinement effect of the Al–5Ti–1B alloys prepared by powder mixing+ gas atomization + hot extrusion is very good, the average grain size of 7050 aluminum alloys is only 176 μm. According to this experimental phenomenon, a new explanation for the grain refinement and double nucleation mechanism of the Al–Ti–B alloys is proposed.
  • 钛合金是一种比强度高、耐蚀性能优异的合金材料, 对航空航天、汽车制造等领域发挥了重要的作用。但在实际应用过程中, 钛合金存在抗高温氧化与耐磨性不足的问题, 严重限制了该合金材料在高温载荷领域的进一步推广应用[1-3]。为了进一步提升钛合金的各项性能, 大多数研究人员主要通过喷焊、气相沉积、激光熔覆等工艺对钛合金进行表面处理[4-6]。其中, 激光熔覆技术可以在不改变钛合金性能的前提下使涂层间形成良好冶金结合状态, 对于钛合金材料摩擦性能的提升起到了明显的促进作用[7-8]。现阶段, 许多学者在Ti4合金耐磨性方面主要是通过增加该材料的表面硬度来实现。不过, 加入钛合金中的TiN、WC、VC等硬质相颗粒在860℃温度下却存在容易被空气氧化的问题[9-10]。例如, Feng等[11]利用激光熔覆处理工艺对Ti5合金表面进行处理, 生成包含增强相TiNi/Ti2Ni基涂层, 并对该涂层进行了表征, 得到涂层中形成了具有均匀分布状态的陶瓷相颗粒, 从而增加了合金材料的耐磨性。Guo等[12]则利用激光熔覆技术对Ni Cr BSi/WC–Ni合金涂层进行了处理, 制得了具有良好耐磨性能的合金涂层。齐鸣等[13]采用激光熔覆工艺使高温合金表面生成MoSi2/Al涂层, 之后在1050℃下对该涂层实施了耐高温氧化性测试, 当涂层中含有的Al比例上升后, 生成的氧化膜中的Al2O3会显著提高熔覆层的耐高温氧化性。余鹏程等[14]对Ti4合金表面进行激光熔覆处理后得到了含有增强相Al3Ti/Ni Ti基涂层, 研究得到当涂层内含有的Al3Ni2脆性颗粒数量增加后, 涂层耐磨性发生了降低的现象。

    到目前为止, 大部分学者都是将研究重点集中于通过激光熔覆处理方法来提升钛合金的耐磨性方面, 但很少有文献报道关于钛合金耐高温抗氧化性能的改善内容[15]。本文主要通过激光熔覆处理工艺使Ti4合金表面生成Ni Al Si涂层, 并深入探讨了在860℃温度下该涂层对抗氧化性提升的效果及其作用机理。

    实验用原料为Ti4合金, 试样尺寸40 mm×40 mm×8 mm, 用砂纸打磨试样熔覆面, 充分去除表面氧化膜。选择80Ni–40Al–20Si复合粉末作为熔覆材料, 采用QM-3SP04型行星球磨机对该粉末进行12 h的球磨处理。

    先在Ti4合金试样涂覆一层甲基纤维素黏结剂, 再铺设一层厚度为1.5 mm的混合粉末, 再将其放入120℃的干燥箱内进行2 h的保温。本实验在DLS-980.10-3000C半导体激光器上完成激光熔覆过程, 工艺参数为: 输出功率2 kW, 扫描速度3.5 mm·s-1, 光斑大小5 mm×2.5 mm。

    通过线切割方式得到熔覆层的截面金相试样, 并对该试样进行了X射线衍射(X-ray diffraction, XRD) 表征。利用S-4700型场发射扫描电镜(scanning electron microscopy, SEM) 对涂层微观组织进行了观察, 同时在该电镜附带的能谱仪(energy disperse spectroscope, EDS) 上表征了涂层的各元素组成情况。利用HMF1400-50高温电阻炉测试其抗高温氧化性能, 并计算单位面积对应的质量变化情况。对经过氧化处理的合金与涂层进行金相观察。

    图 1 (a) 中可以看到涂层横截面的扫描电子显微形貌。根据图 1 (a) 可知, 在涂层内也没有观察到裂纹结构, 只有少数气孔存在。从图 1 (b) 中可以看到在Ti4和涂层的结合部位形成了熔合线, 可以推断涂层和钛合金之间形成了良好的冶金结合状态。同时还可以观察到在涂层的底部区域形成了众多的柱状晶, 这主要是因为受到凝固冷却的影响, 钛合金垂直的方向上具有最快的冷却速率, 从而导致涂层的下部晶粒优先从垂直钛合金表面的方向上开始生长。图 1 (c) 是对应于图 1 (b) 的放大图, 可以明显看到该图包含了块状区域A与网状区域B两种, 对这些区域进行能谱测试可知, 区域A中的元素类型包括Ti与Si, 两者的原子数分数比接近5:3, 可见该区域的成分主要是Ti5Si3金属间化合物; 对区域B进行元素分析得到该区域包含Ni与Al两种元素, 其原子数分数比接近3:2, 进一步结合X射线衍射图谱可知, 区域B的成分主要是Al3Ni2金属间化合物, 因此可以推断涂层中包含了Ti5Si3与Al3Ni2两种主要成分。

    图  1  合金涂层横截面扫描电子显微组织形貌: (a) 整体; (b) 热影响区; (c) 热影响区放大图
    Figure  1.  SEM images of alloy coating in cross section: (a) integral; (b) heat affected zone; (c) magnification of heat affected zone
    表  1  图 1 (c) 中区域A和区域B能谱分析
    Table  1.  EDS analysis of area A and area B in Fig. 1 (c)
    区域 原子数分数/%
    Ti Ni Al Si
    A 44.28 22.18 5.48 28.06
    B 23.54 42.18 30.02 4.26
    下载: 导出CSV 
    | 显示表格

    表 2中可以看到对钛合金与合金涂层进行高温氧化测试得到的试样单位面积质量变化值, 其中钛合金的单位面积质量增加值显著高于合金涂层, 可见合金涂层的耐高温氧化性能优于钛合金。经过40 h的恒温氧化处理后, 试样单位面积质量增加了24.4 mg·cm-2, 可见在860℃温度下, Ti4合金的表面发生了明显的氧化过程, 此时形成的氧化膜也不能有效抑制氧原子的扩散过程。其中, 在初期高温氧化阶段, 合金涂层具有很快的氧化速率, 当氧化时间不断增加后, 合金涂层的氧化速率降低, 因此可以推断合金涂层表面氧化膜具有降低氧化速率的作用; 经过40 h的高温氧化处理后, 粉末合金涂层的质量增加值是2.19 mg·cm-2, 比Ti4合金的耐高温氧化性能提高了12倍左右。

    表  2  Ti4合金和合金涂层高温氧化(860℃) 测试结果
    Table  2.  High temperature oxidation test results of Ti4 alloy and alloy coating at 860℃
    样品 单位面积质量变化/(mg·cm2)
    5 h 10 h 20 h 30 h 40 h
    Ti4 合金 2.40 4.40 9.20 16.70 24.40
    合金涂层 1.82 1.90 2.02 2.11 2.19
    下载: 导出CSV 
    | 显示表格

    Ti4合金与粉末合金涂层在860℃温度下进行40 h的氧化处理后, 对其表面氧化层进行X射线衍射测试得到如图 2所示的谱图。从图 2的测试谱图中可以发现, Ti4合金的氧化层基本包含Al2O3与TiO2两种物相成分, 并且TiO2的衍射峰强度显著高于Al2O3, 说明氧化膜主要是由TiO2构成。由于在860℃下V2O5的挥发性较高, 因此在X射线衍射谱图中未观察到该氧化物的衍射峰, 同时氧化膜也因为V2O5的挥发而形成多孔结构, 使氧原子更易向膜内扩散, 导致合金耐高温氧化性降低。

    图  2  860℃氧化处理40 h后Ti4合金(a) 和合金涂层表面氧化层(b) X射线衍射图谱
    Figure  2.  XRD patterns of Ti4 alloy (a) and oxide layer of alloy coating surface (b) after oxidation at 860℃for 40 h

    图 3 (a) 为在860℃下进行40 h氧化处理后得到的Ti4合金横截面扫描电子显微形貌, 可以发现此时Ti4合金表面出现了较严重腐蚀的情况, 生成的氧化膜表现出了明显的热脆性特征, 较易从表面发生脱落的现象。对Ti4合金的氧化膜微观形貌进行分析可知, 氧化膜主要由许多球形颗粒与柱状物构成, 根据能谱分析(表 3) 可知, 柱状物成分主要是TiO2。在TiO2的形核与生长期间, 还会形成少量的Al2O3, 使氧化膜中形成众多微孔, 这种不连续的氧化膜结构不能发挥有效阻止氧原子扩散的作用, 不利于提高合金的耐高温氧化性。

    图  3  Ti4合金和合金涂层氧化膜横截面扫描电子显微形貌: (a) Ti4合金; (b) 合金涂层
    Figure  3.  Cross section SEM morphology of Ti4 alloy and alloy coating oxidation film: (a) Ti4 alloy; (b) alloy coating
    表  3  图 3区域A和区域B能谱分析
    Table  3.  EDS analysis of regions A and B in Fig. 3
    区域 原子数分数/%
    Ti Ni Al Si O
    A 38.20 1.20 7.86 2.68 50.06
    B 8.26 4.86 35.22 3.38 48.28
    下载: 导出CSV 
    | 显示表格

    图 3 (b) 为在860℃下进行40 h氧化处理后得到的合金涂层氧化膜扫描电子显微形貌。从图中可知, 合金涂层与氧化膜之间保持紧密结合状态, 未看到有脱落情况出现。对该涂层进行能谱分析(表 3) 可知, 其表面氧化膜中的元素主要为O、Al, 同时还有部分Si、Ni、Ti, 因此可以推断该氧化膜的主要成分时Al2O3, 此外还含有部分NiO、SiO2、TiO等。因为Al2O3能够形成致密的连续结构, 起到明显抑制O元素扩散的效果, 使合金涂层耐高温抗氧化性能获得显著提高。

    (1) Ti4合金和合金涂层的结合部位形成了熔合线, 可以推断合金涂层和钛合金之间形成了良好的冶金结合状态。同时还可以观察到在涂层的底部区域形成了众多的柱状晶, 涂层中包含了Ti5Si3与Al3Ni2两种主要成分。

    (2) 钛合金的单位面积质量增加值显著高于合金涂层, 可见合金涂层的耐高温氧化性能优于钛合金。经过40 h的高温氧化处理后, 粉末涂层的质量增加值是2.19 mg·cm-2, 比Ti4合金的耐高温氧化性能提高了12倍左右。

    (3) 在860℃下进行40 h氧化处理得到的合金涂层与氧化膜之间保持紧密结合状态, 未看到有脱落情况出现, 氧化膜的主要成分是Al2O3

  • 图  1   Al–5Ti–1B气雾化合金粉显微形貌

    Figure  1.   SEM images of the gas atomized Al–5Ti–1B alloy powders

    图  2   Al–5Ti–1B气雾化合金粉粒度分布

    Figure  2.   Size distribution of the gas atomized Al–5Ti–1B alloy powders

    图  3   Al–5Ti–1B合金X射线衍射图谱:(a)1#样品;(b)2#样品

    Figure  3.   XRD patterns of the Al–5Ti–1B alloys: (a) sample 1#; (b) sample 2#

    图  4   Al–5Ti–1B合金显微组织:(a)、(b)1#样品;(c)、(d)2#样品

    Figure  4.   Microstructures of the Al–5Ti–1B alloys: (a), (b) sample 1#; (c), (d) sample 2#

    图  5   未添加细化剂的7050铝合金铸态组织

    Figure  5.   As-cast microstructure of the 7050 aluminum alloys without refiner

    图  6   添加不同细化剂后7050铝合金铸态组织:(a)1# Al–5Ti–1B细化剂;(b)2# Al–5Ti–1B细化剂

    Figure  6.   As-cast microstructures of the 7050 aluminum alloys add by the different refiners: (a) 1# Al–5Ti–1B; (b) 2# Al–5Ti–1B

    图  7   双重形核理论示意图

    Figure  7.   Schematic diagram of the double nucleation mechanism

    图  8   新双重形核理论细化机制示意图

    Figure  8.   Schematic diagram of the new double nucleation refinement mechanism

    表  1   Al–5Ti–2B合金样品的原材料和工艺路线

    Table  1   Raw materials and the process route of the Al–5Ti–2B alloy samples

    样品原材料工艺路线
    1#Al粉,Ti粉,TiB2混合–热挤压
    2#Al粉,Ti粉,TiB2混合–真空气雾化–热挤压
    下载: 导出CSV

    表  2   Al–5Ti–1B合金化学成分

    Table  2   Chemical composition of the Al–5Ti–1B alloys (×10−6)

    样品TiBZrSiFe
    1#49716.39889.71261.8959.5966.9
    2#50716.310269.5918.8608.21480.4
    下载: 导出CSV
  • [1] 马世光, 熊慧, 王祝堂. 回顾与展望全球铝产品产量及对晶粒细化剂的需求. 轻合金加工技术, 2011, 39(10): 1 DOI: 10.3969/j.issn.1007-7235.2011.10.001

    Ma S G, Xiong H, Wang Z T. Review and outlook of output of aluminum product and grain refiner requirement in the world. Light Alloy Fab Technol, 2011, 39(10): 1 DOI: 10.3969/j.issn.1007-7235.2011.10.001

    [2] 闫敬明, 黎平, 左孝青, 等. Al–Ti–B晶粒细化剂研究进展: 细化机理及第二相控制. 材料导报, 2020, 34(5): 152

    Yan J M, Li P, Zuo X Q, et al. Research progress of Al–Ti–B grain refiner: mechanism analysis and second phases controlling. Mater Rep, 2020, 34(5): 152

    [3] 钟海燕, 袁孚胜. Al–Ti–B中间合金生产方法及发展趋势. 有色金属材料与工程, 2016, 37(5): 243

    Zhong H Y, Yuan F S. Production method and development trend of the Al–Ti–B master alloy. Nonferrous Met Mater Eng, 2016, 37(5): 243

    [4] 陈亚军, 许庆彦, 黄天佑. 铝合金晶粒细化剂研究进展. 材料导报, 2006, 20(12): 57 DOI: 10.3321/j.issn:1005-023X.2006.12.016

    Chen Y J, Xu Q Y, Huang T Y. Development of research on grain refiners for aluminum alloys. Mater Rev, 2006, 20(12): 57 DOI: 10.3321/j.issn:1005-023X.2006.12.016

    [5] 李润霞, 张文华, 张鹏, 等. 电磁搅拌对Al–5Ti–B中间合金组织及细化效果的影响. 铸造, 2016, 65(1): 1 DOI: 10.3969/j.issn.1001-4977.2016.01.001

    Li R X, Zhang W H, Zhang P, et al. Effect of electromagnetic stirring on the microstructure and refinement of Al–5Ti–B master alloy. Foundry, 2016, 65(1): 1 DOI: 10.3969/j.issn.1001-4977.2016.01.001

    [6] 王顺成, 郑开宏, 戚文军, 等. 电磁搅拌对Al–5Ti–1B的显微组织与晶粒细化能力的影响. 有色金属科学与工程, 2014, 5(1): 58

    Wang S C, Zheng K H, Qi W J, et al. Effect of electromagnetic stirring on microstructure and grain refining efficiency of Al–5Ti–1B grain refiner. Nonferrous Met Sci Eng, 2014, 5(1): 58

    [7] 董天顺, 崔春翔, 刘双进, 等. Al–Ti–B细化剂的快速凝固及其细化机理研究. 稀有金属材料与工程, 2008, 37(1): 29 DOI: 10.3321/j.issn:1002-185X.2008.01.007

    Dong T S, Cui C X, Liu S J, et al. Study on the rapid solidification and refining mechanism of Al–Ti–B refiner. Rare Met Mater Eng, 2008, 37(1): 29 DOI: 10.3321/j.issn:1002-185X.2008.01.007

    [8]

    Ghadimi H, Hossein N S, Eghbali B. Enhanced grain refinement of cast aluminum alloy by thermal and mechanical treatment of Al–5Ti–B master alloy. Trans Nonferrous Met Soc China, 2013, 23: 1563 DOI: 10.1016/S1003-6326(13)62631-X

    [9] 王顺成, 康跃华, 周楠, 等. 粉末压制Al–5Ti–1B合金的显微组织与晶粒细化性能. 中国有色金属学报, 2019, 29(8): 1583 DOI: 10.1016/S1003-6326(19)65065-X

    Wang S C, Kang Y H, Zhou N, et al. Microstructure and grain refining performance of Al–5Ti–1B alloy prepared by powder compaction. Chin J Nonferrous Met, 2019, 29(8): 1583 DOI: 10.1016/S1003-6326(19)65065-X

    [10] 刘艳, 尤齐燊, 朱红梅, 等. 电极感应气雾化法制备新型高硬度马氏体铁基合金粉末. 粉末冶金技术, 2021, 39(6): 537

    Liu Y, You Q S, Zhu H M, et al. Preparation of new high hardness martensitic iron-based alloy powders by electrode induction gas atomization. Powder Metall Technol, 2021, 39(6): 537

    [11] 黄培云. 粉末冶金原理. 2版. 北京: 冶金工业出版社, 2004

    Huang P Y. Theory of Power Metallurgy. 2nd Ed. Beijing: Metallurgical Industry Press, 2004

    [12] 王承阳, 常洋, 张林海, 等. 氧化锆含量对钼合金组织和性能的影响. 粉末冶金技术, 2021, 39(5): 429

    Wang C Y, Chang Y, Zhang L H, et al. Effect of ZrO2 content on microstructure and properties of molybdenum alloys. Powder Metall Technol, 2021, 39(5): 429

    [13] 吴明明, 李来平, 高选乔, 等. 粉末冶金技术制备钼基复合材料研究进展. 粉末冶金技术, 2021, 39(5): 462

    Wu M M, Li L P, Gao X Q, et al. Research progress of molybdenum-based composites prepared by powder metallurgy technology. Powder Metall Technol, 2021, 39(5): 462

    [14] 高泽生. 铝合金晶粒细化剂的试验方法(2). 轻金属, 1999(4): 52

    Gao Z S. Test method for grain refiners of aluminum alloys. Light Met, 1999(4): 52

    [15]

    He S W, Liu Y, Guo S. Cooling rate calculation of non-equilibrium aluminum alloy powders prepared by gas atomization. Rare Met Mater Eng, 2009, 38(Suppl 1), 353

    [16] 中华人民共和国工业和信息化部. YST 447.1-2011铝及铝合金晶粒细化用合金线材, 第1部分: 铝–钛–硼合金线材. 北京: 中国标准出版社, 2011

    Ministry of Industry and Information Technology, People’s Republic of China. YST 447.1-2011 Alloy Wires Used for the Grain Refiner for Aluminium and Aluminium Alloys — Part 1: AlTiB Wires. Beijing: Standards Press of China, 2011

    [17] 戚文军, 王顺成, 陈学敏, 等. Al–5Ti–1B合金的有效形核相与晶粒细化机制. 稀有金属, 2013, 37(2): 179 DOI: 10.3969/j.issn.0258-7076.2013.02.002

    Qi W J, Wang S C, Chen X M, et al. Effective nucleation phase and grain refinement mechanism of Al–5Ti–1B master alloy. Chin J Rare Met, 2013, 37(2): 179 DOI: 10.3969/j.issn.0258-7076.2013.02.002

    [18]

    Fan Z, Wang Y, Zhang Y, et al. Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater, 2015, 84: 292 DOI: 10.1016/j.actamat.2014.10.055

    [19]

    Limmaneevichitr C, Eidhed W. Fading mechanism of grain refinement of aluminum-silicon alloy with Al–Ti–B grain refiners. Mater Sci Eng, 2003, 349: 197 DOI: 10.1016/S0921-5093(02)00751-7

    [20] 薛希国, 谷吉存, 闫振武. 铝钛硼晶粒细化剂机理研究的进展及最新动向. 铝加工, 2004(1): 43 DOI: 10.3969/j.issn.1005-4898.2004.01.002

    Xue X G, Gu J C, Yan Z W. Study progress and new trends for Al–Ti–B grain refining mechanism. Alum Fab, 2004(1): 43 DOI: 10.3969/j.issn.1005-4898.2004.01.002

  • 期刊类型引用(0)

    其他类型引用(4)

图(8)  /  表(2)
计量
  • 文章访问数:  658
  • HTML全文浏览量:  146
  • PDF下载量:  143
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-09-02
  • 录用日期:  2021-09-02
  • 网络出版日期:  2021-11-07
  • 刊出日期:  2022-06-27

目录

/

返回文章
返回