磷含量对青铜基含油轴承力学性能与摩擦性能的影响

范心怡 胡林桂 邓泽浩晨 杨加其 申小平

范心怡, 胡林桂, 邓泽浩晨, 杨加其, 申小平. 磷含量对青铜基含油轴承力学性能与摩擦性能的影响[J]. 粉末冶金技术, 2024, 42(2): 200-206. doi: 10.19591/j.cnki.cn11-1974/tf.2021090006
引用本文: 范心怡, 胡林桂, 邓泽浩晨, 杨加其, 申小平. 磷含量对青铜基含油轴承力学性能与摩擦性能的影响[J]. 粉末冶金技术, 2024, 42(2): 200-206. doi: 10.19591/j.cnki.cn11-1974/tf.2021090006
FAN Xinyi, HU Lingui, DENG Zehaochen, YANG Jiaqi, SHEN Xiaoping. Effect of phosphorus content on the mechanical and friction properties of oil-impregnated bronze bearings[J]. Powder Metallurgy Technology, 2024, 42(2): 200-206. doi: 10.19591/j.cnki.cn11-1974/tf.2021090006
Citation: FAN Xinyi, HU Lingui, DENG Zehaochen, YANG Jiaqi, SHEN Xiaoping. Effect of phosphorus content on the mechanical and friction properties of oil-impregnated bronze bearings[J]. Powder Metallurgy Technology, 2024, 42(2): 200-206. doi: 10.19591/j.cnki.cn11-1974/tf.2021090006

磷含量对青铜基含油轴承力学性能与摩擦性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021090006
基金项目: 国家级本科生科研训练项目
详细信息
    通讯作者:

    E-mail: xpshen171@163.com

  • 中图分类号: TF125;TG146.1

Effect of phosphorus content on the mechanical and friction properties of oil-impregnated bronze bearings

More Information
  • 摘要: 以青铜作为轴承基体,通过改变磷含量(0~1%,质量分数)和烧结温度,在一定转速和载荷下,测量轴承的摩擦系数和磨损量,并测定了轴承的开环强度,研究了磷含量对青铜基含油轴承的摩擦性能和力学性能的影响,获得一定工作条件下轴承配方和烧结工艺参数。结果表明:随着磷含量的增加,含油轴承的磨损量降低,力学性能提高,但磷含量过高时,轴承的含油率降低并低于轴承最低标准;随着烧结温度的增加,试样力学性能提高,但摩擦因数不稳定。当磷质量分数为0.7%、烧结温度为650 ℃时,含油轴承拥有良好的综合性能,开环强度和含油率分别为22 MPa和13.52%,摩擦因数稳定,呈最佳烧结状态。
  • 图  1  650 ℃烧结温度下添加不同质量分数磷试样腐蚀后显微组织形貌:(a)0%;(b)0.1%;(c)0.3%;(d)0.5%;(e)0.7%;(f)1.0%

    Figure  1.  Microstructures of the specimens added with P in the different mass fraction at the sintering temperature of 650 ℃: (a) 0%; (b) 0.1%; (c) 0.3%; (d) 0.5%; (e) 0.7%; (f) 1.0%

    图  2  650 ℃烧结温度下试样表面孔隙形貌:(a)1#;(b)5#

    Figure  2.  Pore profiles at the specimen surface at the sintering temperature of 650 ℃: (a) 1#; (b) 5#

    图  3  650 ℃烧结温度下5#试样扫描电子显微形貌和元素面分布能谱分析

    Figure  3.  SEM images and elemental surface distribution EDS of the 5# specimen at the sintering temperature of 650 ℃

    图  4  Cu−Sn−P三元室温截面图

    Figure  4.  Sectional view of the Cu−Sn−P ternary phase diagram at room temperature

    图  5  烧结温度与P质量分数对试样硬度的影响

    Figure  5.  Effect of sintering temperature and phosphorus mass fraction on the specimen hardness

    图  6  650 ℃烧结温度下P质量分数对开环强度的影响

    Figure  6.  Effect of phosphorus mass fraction on the open ring strength at the sintering temperature of 650 ℃

    图  7  650 ℃烧结温度下不同P含量试样摩擦磨损系数随时间变化曲线

    Figure  7.  Time variation curves of friction and wear coefficient of the samples sintered at 650 ℃ with different P content

    图  8  不同烧结温度试样摩擦磨损系数随时间变化曲线

    Figure  8.  Time variation curves of friction and wear coefficient of the samples sintered at different temperatures

    图  9  650 ℃烧结温度下5#试样摩擦失效表面显微形貌和元素面分布能谱分析

    Figure  9.  SEM images and the elemental surface distribution EDS of the 5# specimen sintered at 650 ℃ after friction failure

    表  1  含油轴承化学成分(质量分数)

    Table  1.   Chemical composition of the oil-impregnated bearings %

    序号CuSnP硬脂酸锌
    1#余量9.9400.6
    2#余量9.930.10.6
    3#余量9.910.30.6
    4#余量9.890.50.6
    5#余量9.870.70.6
    6#余量9.841.00.6
    下载: 导出CSV

    表  2  不同烧结温度下不同P含量试样的孔隙率和含油率

    Table  2.   Porosity and oil content of the specimens in different phosphorus content at different sintering temperature

    序号650 ℃670 ℃685 ℃700 ℃
    孔隙率 / %含油率 / %孔隙率 / %含油率 / %孔隙率 / %含油率 / %孔隙率 / %含油率 / %
    1#25.3814.4323.2813.3822.9713.2212.77
    2#22.2114.6422.5813.8621.3713.5413.70
    3#23.1114.1421.8413.0520.6512.7412.87
    4#19.9913.9419.5712.8918.9812.6712.63
    5#16.0013.5215.6311.5314.3211.3611.29
    6#14.476.5411.555.2310.564.573.36
    下载: 导出CSV

    表  3  不同P含量试样摩擦实验后的平均磨损量

    Table  3.   Average wear loss of the samples with the different P contents after the friction test

    序号磨损量 / g
    1#0.045
    2#0.035
    3#0.035
    4#0.030
    5#0.025
    6#0.015
    下载: 导出CSV
  • [1] Han F L. Powder metallurgy machinery parts. Powder Metall Technol, 2016, 34(2): 155

    韩凤麟. 粉末冶金机械零件. 粉末冶金技术, 2016, 34(2): 155
    [2] Han F L, Jia C C. Sintered Metal Oily Bearings―Principle, Design, Manufacture and Application. Beijing: Chemical Industry Publishing, 2004

    韩凤麟, 贾成厂. 烧结金属含油轴承―原理, 设计, 制造与应用. 北京: 化学工业出版, 2004
    [3] Fang X L, Zheng H J. Application and prospect of copper-based powder metallurgy friction materials. Powder Metall Technol, 2020, 38(4): 313

    方小亮, 郑合静. 铜基粉末冶金摩擦材料的应用及展望. 粉末冶金技术, 2020, 38(4): 313
    [4] Huang Z X, Lan J, Yang S Y, et al. Effect of MoS2 and graphite on friction properties of bronze oil bearing. Powder Metall Technol, 2020, 38(5): 363

    黄钊炫, 兰江, 杨诗钰, 等. MoS2铜基含油轴承摩擦性能的影响. 粉末冶金技术, 2020, 38(5): 363
    [5] Zhou Z P, Shen X P. Practical Technology of Powder Metallurgical Machinery Parts. Beijing: Chemical Industry Publishing, 2006

    周作平, 申小平. 粉末冶金机械零件实用技术. 北京: 化学工业出版社, 2006
    [6] Sap E. Microstructural and mechanical properties of Cu-based Co−Mo-reinforced composites produced by the powder metallurgy method. J Mater Eng Perform, 2020, 29(12): 8461 doi: 10.1007/s11665-020-05309-4
    [7] Liu X, Zheng Y H, Guo Y L, et al. Study on the rolling friction and wear properties of surface densified powder metallurgy Fe−2Cu−0.6C material. Surf Topog, 2020, 8(1): 015009
    [8] Aygul E, Yalcinkaya S, Sahin Y. Characterization of Ti–6Al–(4V–7Nb–4Mo) biomedical alloys produced by powder metallurgy method. Powder Metall Met Ceram, 2020, 59: 296 doi: 10.1007/s11106-020-00162-5
    [9] Zhu S L, Zhang H B, Wang H N. Progress in synthesis technologies of raw materials for powder metallurgy copper-based oil bearing in China // National Conference on Powder Metallurgy and Technical Seminar on Powder Metallurgy on Both Sides of the Taiwan Strait. Wuhan, 2015: 301

    朱胜利, 张惠斌, 王汉宁. 国内粉末冶金铜基含油轴承粉料制备技术研究进展 // 全国粉末冶金学术会议暨海峡两岸粉末冶金技术研讨会. 武汉, 2015: 301
    [10] Kostornov A G, Fushchich O I. Effects of copper powder bearing material composition on working characteristics. Powder Metall Met Ceram, 2005, 44: 202 doi: 10.1007/s11106-005-0081-7
    [11] Wang F Y, Pan Y, Liang C X. Study on properties of CuSn−P−Mo−C sintered bearing materials. Prog Chin Mater, 2010, 29(5): 48

    王凤云, 潘冶, 梁昌霞. CuSn−P−Mo−C系烧结轴承材料性能的研究. 中国材料进展, 2010, 29(5): 48
    [12] Wang F Y, Pan Y. Effects of Ni and Fe on properties of Cu−Sn−P series sintered bearing materials. Bearing, 2010(1): 33 doi: 10.3969/j.issn.1000-3762.2010.01.011

    王凤云, 潘冶. Ni和Fe对Cu−Sn−P系粉末冶金轴承材料性能的影响. 轴承, 2010(1): 33 doi: 10.3969/j.issn.1000-3762.2010.01.011
    [13] Li C, Wang J F, Hu S, et al. Diffusion and microstructure analysis of copper vacuum brazing with Cu−P filler. Trans China Weld Inst, 2019, 40(3): 91

    李聪, 王金凤, 胡爽, 等. Cu−P钎料真空钎焊紫铜的钎焊后扩散及组织分析. 焊接学报, 2019, 40(3): 91
    [14] Sun X B. Effect of Heating Process on Microstructure and Properties of Copper Alloy after Extrusion [Dissertation]. Taiyuan: North University of China, 2017

    苏晓波. 加热工艺对铜合金挤压成型后组织性能的影响[学位论文]. 太原: 中北大学, 2017
    [15] Liu J S, Ji Z, Jia C C. Preparation and properties of nano-AlN particle dispersion strengthened Cu-matrix composite. Powder Metall Technol, 2017, 35(5): 323

    刘佳思, 纪箴, 贾成厂, 等. 纳米AlN颗粒弥散增强铜基复合材料的制备及性能研究. 粉末冶金技术, 2017, 35(5): 323
    [16] Liang X B, Li G, Wang L S, et al. Study on friction and wear properties of powder metallurgy sinter hardening cam material. Powder Metall Technol, 2015, 33(2): 83

    梁雪冰, 李改, 王林山, 等. 粉末冶金烧结硬化凸轮材料的摩擦磨损性能研究. 粉末冶金技术, 2015, 33(2): 83
    [17] Qiu T X, Zhang J F, Sun L, et al. Tribological properties of Fe−5(Cu−10Sn)−garphite−P−MoS2 oil-containing materials. Mater Sci Eng Powder Metall, 2019, 24(5): 459

    邱天旭, 张继峰, 孙露, 等. 粉末冶金Fe−5(Cu−10Sn)−石墨−P−MoS2含油材料的摩擦性能. 粉末冶金材料科学与工程, 2019, 24(5): 459
    [18] Ren S X, Chen W G, Feng T, et al. Microstructure and properties of carbon fiber reinforced Fe−Cu based friction materials prepared by powder metallurgy. Powder Metall Technol, 2020, 38(2): 104

    任澍忻, 陈文革, 冯涛, 等. 粉末冶金制备碳纤维增强铁−铜基摩擦材料的组织与性能. 粉末冶金技术, 2020, 38(2): 104
    [19] Zhang Y, Kovalev A, Meng Y. Combined effect of boundary layer formation and surface smoothing on friction and wear rate of lubricated point contacts during normal running-in processes. Friction, 2018, 6: 274 doi: 10.1007/s40544-018-0228-4
    [20] Liu J X, Pan S L, Wu S, et al. Research and development of reinforced phases in copper based powder metallurgical friction materials. Powder Metall Ind, 2020, 30(1): 77

    刘建秀, 潘胜利, 吴深, 等. 铜基粉末冶金摩擦材料增强相的研究发展状况. 粉末冶金工业, 2020, 30(1): 77
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  27
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回