碳纳米管增强铝基复合材料界面与晶粒调控研究进展

施展 马凤仓 谭占秋 范根莲 李志强

施展, 马凤仓, 谭占秋, 范根莲, 李志强. 碳纳米管增强铝基复合材料界面与晶粒调控研究进展[J]. 粉末冶金技术, 2024, 42(1): 14-28. doi: 10.19591/j.cnki.cn11-1974/tf.2021090008
引用本文: 施展, 马凤仓, 谭占秋, 范根莲, 李志强. 碳纳米管增强铝基复合材料界面与晶粒调控研究进展[J]. 粉末冶金技术, 2024, 42(1): 14-28. doi: 10.19591/j.cnki.cn11-1974/tf.2021090008
SHI Zhan, MA Fengcang, TAN Zhanqiu, FAN Genlian, LI Zhiqiang. Research progress on the interface and grain control in carbon nanotube reinforced aluminum matrix composites[J]. Powder Metallurgy Technology, 2024, 42(1): 14-28. doi: 10.19591/j.cnki.cn11-1974/tf.2021090008
Citation: SHI Zhan, MA Fengcang, TAN Zhanqiu, FAN Genlian, LI Zhiqiang. Research progress on the interface and grain control in carbon nanotube reinforced aluminum matrix composites[J]. Powder Metallurgy Technology, 2024, 42(1): 14-28. doi: 10.19591/j.cnki.cn11-1974/tf.2021090008

碳纳米管增强铝基复合材料界面与晶粒调控研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2021090008
详细信息
    通讯作者:

    E-mail: 417723503@qq.com

  • 中图分类号: TF123; TB331

Research progress on the interface and grain control in carbon nanotube reinforced aluminum matrix composites

More Information
  • 摘要: 随着碳纳米管增强铝基复合材料制备工艺的不断完善,碳纳米管的难分散问题被妥善解决,复合材料的强度有所提高,但复合材料的高模量、高强度没有得到充分利用,并出现“强度–塑性”倒置现象。本文总结了近年来对碳/铝复合材料界面结构、晶粒结构与复合构型设计的调控手段,讨论了界面结构强度对碳纳米管载荷传递效率的影响,分析了出现倒置现象的原因,并针对复合材料塑韧性差的问题,提出了调控思路,为制备强度高、韧性强的碳纳米管增强铝基复合材料提供依据。
  • 图  1  基体–增强体界面结构示意图:(a)I型;(b)II型;(c)III型

    Figure  1.  Schematic diagrams of the interface structure between the matrix and reinforcements: (a) type I; (b) type II; (c) type III

    图  2  不同烧结温度CNTs/Al复合材料透射电子显微形貌[9]:(a)~(c)800 K;(d)~(f)900 K

    Figure  2.  Transmission electron microscope (TEM) images of the CNTs/Al composites at different sintering temperatures[9]: (a)~(c) 800 K; (d)~(f) 900 K

    图  3  原始碳纳米管和包覆SiC碳纳米管的滴铝接触角测量(真空、800 ℃)[10]:(a)光学形貌;(b)原始碳纳米管滴铝接触角;(c)包覆SiC碳纳米管滴铝接触角

    Figure  3.  Contact angle measurement of the pristine CNTs pellet and SiC/CNTs pellet after the sessile drop of aluminum at 800 ℃ in vacuum[10]: (a) optical image; (b) contact angle measurement of the pristine CNTs pellet; (c) contact angle measurement of the SiC/CNTs pellet

    图  4  不同强化相铝基纳米复合材料拉伸试验断口形貌:(a)、(b)碳纳米管;(c)、(d)涂覆不同厚度SiC的碳纳米管[11]

    Figure  4.  Tensile fracture morphology of the aluminum matrix nanocomposites with different reinforcements: (a), (b) CNTs; (c), (d) CNTs decorated with different thickness of SiC transition layer[11]

    图  5  碳纳米管增强铝基复合材料断口形貌[16]:(a)、(c)CNTs/Al–Cu;(b)、(d)CNTs/Al–Cu–Mg

    Figure  5.  Fractography images of the CNTs/Al composites[16]: (a), (c) CNTs/Al–Cu; (b), (d) CNTs/Al–Cu–Mg

    图  6  CNTs/Al复合材料界面处原位引入Al2O3纳米粒子透射电子显微形貌[17]

    Figure  6.  TEM images of the in situ introduced Al2O3 nanoparticles at the interface of CNTs/Al composites[17]

    图  7  碳纳米管在硼酸溶液中的吸附机理(a),CNTs@H3BO3混合粉末扫描电子显微形貌及能谱分析(b)~(b3)以及对选定区域元素的成分分析(c)[24]

    Figure  7.  Mechanisms of the CNTs adsorption in boric acid solution (a), the scanning electron microscope (SEM) image and the corresponding energy spectrum analysis of the CNTs@H3BO3 hybrid powders (b)~(b3), and the element component analysis in the selected area (c)[24]

    图  8  CNTs/Al复合粉末制备工艺图(a);碳纳米管在聚乙烯醇表面的吸附机理示意图(b);聚乙烯醇膜的形成(c)以及碳纳米管的吸附(d)[26]

    Figure  8.  Fabrication procedures for the CNTs/Al composite powders (a), the schematic of the CNTs adsorption mechanism on the PVA surface (b), PVA membrane formation (c), and the CNTs adsorption (d)[26]

    图  9  沉积薄膜表面扫描电子显微形貌:(a)碳纳米管;(b)350 ℃沉积在碳纳米管上的SiO2;(c)350 ℃沉积在碳纳米管上的TiN[43]

    Figure  9.  SEM images of the deposited film surfaces: (a) CNTs; (b) SiO2 deposited on CNTs at 350 ℃; (c) TiN deposited on CNTs at 350 ℃[43]

    图  10  原料、碳纳米管–硅粉混合物及CNTs/SiC复合粉末显微形貌[46]:(a)纳米硅粉;(b)碳纳米管;(c)CNTs–Si粉末混合物;(d)~(f)热处理后5CNTs–1Si、5CNTs–3SiC和1CNTs–1SiC复合粉末;(g)~(i)1CNTs–1SiC复合粉末显微结构及相应区域的碳、硅元素分布

    Figure  10.  SEM images of the raw materials, CNTs–Si powder mixtures, and CNTs/SiC composite powders[46]: (a) raw Si nano-powders; (b) raw CNTs powders; (c) CNTs–Si powder mixtures; (d)~(f) 5CNTs–1Si, 5CNTs–3SiC and 1CNTs–1SiC composite powders after heat treatment; (g)~(i) microstructure of the 1CNTs–1SiC composite powders and the corresponding carbon and Si element distribution

    图  11  采用分子水平混合技术制备Cu包覆碳纳米管的透射电子显微形貌[32]:(a)未包覆Cu的碳纳米管;(b)包覆Cu的碳纳米管;(c)Cu包覆碳纳米管放大图

    Figure  11.  TEM images of the Cu-coated carbon nanotubes by MLM[32]: (a) Cu-uncoated CNTs; (b) Cu-coated CNTs; (c) magnified view of Cu-uncoated CNTs

    图  12  H2SO4–H2O2((a)、(b))和HNO3–H2SO4((c)、(d))氧化碳纳米管增强Al复合材料透射电镜和高分辨率透射电镜显微形貌[24]

    Figure  12.  TEM and high resolution transmission electron microscope (HRTEM) images of the CNTs/Al composites oxidized by H2SO4–H2O2 ((a), (b)) and HNO3–H2SO4 ((c), (d))[24]

    图  13  Al–γ-Al2O3界面高分辨透射电镜形貌(a)和快速傅立叶变换图像(b)[53]

    Figure  13.  HRTEM image (a) and the inverse fast Flourier transformation image (b) of the Al–γ-Al2O3 interfaces[53]

    图  14  CNTs/Al复合材料晶粒取向电子背向散射衍射分析[9]:(a)烧结温度800 K;(b)烧结温度900 K

    Figure  14.  Grain orientation analysis of the CNTs/Al composites from electron back-scattered diffraction (EBSD)[9]: (a) sintered at 800 K; (b) sintered at 900 K

    图  15  具有非均相和均相CNTs/2009Al复合材料制备工艺示意图[58]

    Figure  15.  Fabrication process schematic of the CNTs/2009Al composites with the heterogeneous and uniform structure[58]

    图  16  不同晶粒结构CNTs/Al–Cu–Mg复合材料典型工程应力–应变曲线(a)和三峰晶粒结构CNTs/Al–Cu–Mg复合材料屈服强度–延伸率关系(b)[28,57-68]

    Figure  16.  Representative engineering stress-strain curves of the CNTs/Al–Cu–Mg composites with different grain structures (a) and the relationship between the yield strength and elongation of the CNTs/Al–Cu–Mg composites with different grain structures (b)[28,57-68]

    表  1  含有质量分数1.5%碳纳米管的CNTs/Al复合材料拉伸性能[52]

    Table  1.   Tensile properties of the CNTs/Al composites with 1.5% CNTs (mass fraction)[52]

    材料球磨方式最终拉伸强度 / MPa均匀延伸率 / %平均晶粒尺寸 / nm总延伸率 / %
    CNTs/Al低速球磨367±23.2±0.13376.3±0.4
    变速球磨376±33.9±0.230812.4±1.3
    高速球磨408±11.5±0.02174.0±0.3
    下载: 导出CSV

    表  2  Al及CNTs/Al复合材料的晶粒结构参数和力学性能[57]

    Table  2.   Structural parameters and mechanical properties of the Al and the CNTs/Al composites[57]

    材料(体积分数)平均晶粒宽度 / nm平均晶粒直径 / nm抗拉强度 / MPa均匀延伸率 / %断裂延伸率 / %
    Al(350 ℃)443881233±25.3±0.217.4±0.9
    Al(320 ℃)326510284±13.5±0.313.7±0.8
    Al(300 ℃)295463298±32.5±0.311.6±1.3
    1%CNTs/Al(350 ℃)438832269±65.2±0.315.3±0.8
    2%CNTs/Al(350 ℃)426756315±25.1±0.211.1±0.6
    1%CNTs/Al(320 ℃)308573315±53.2±0.312.6±1.1
    2%CNTs/Al(350 ℃)297435355±23.6±0.114.8±1.0
    下载: 导出CSV
  • [1] Nie J H, Wei S H, Jia C C, et al. Microstructures and thermal properties of carbon nanotube reinforced aluminum matrix composites for thermal management applications. Powder Metall Technol, 2014, 32(5): 372

    聂俊辉, 魏少华, 贾成厂, 等. 热管理领域用碳纳米管/铝复合材料的组织与热学性能研究. 粉末冶金技术, 2014, 32(5): 372
    [2] Clyne T W, Withers P J. An Introduction to Metal Matrix Composites. New York: Cambridge University Press, 1993
    [3] Yu Z Y. Interface Tailoring and Mechanical Performance of Carbon Nanotube Reinforced Aluminum Matrix Composites [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2019

    俞子贇. 碳纳米管增强铝基复合材料界面调控及力学性能研究[学位论文]. 上海: 上海交通大学, 2019
    [4] Kong Y R, Guo Q, Zhang D. Review on interfacial properties of particle-reinforced aluminum matrix composites. Mater Rev, 2015, 29(5): 34

    孔亚茹, 郭强, 张荻. 颗粒增强铝基复合材料界面性能的研究. 材料导报, 2015, 29(5): 34
    [5] Yao Z Z, Tong W, Chen M H, et al. Controlling the interface reaction in carbon nanotubes-reinforced aluminum composite: a review. Mater Rev, 2016, 30(3): 119

    姚争争, 童伟, 陈名海, 等. 碳纳米管增强铝基复合材料界面控制研究进展. 材料导报, 2016, 30(3): 119
    [6] Kim W J, Yu Y J. The effect of the addition of multiwalled carbon nanotubes on the uniform distribution of TiC nanoparticles in aluminum nanocomposites. Scr Mater, 2014, 72-73: 25 doi: 10.1016/j.scriptamat.2013.10.008
    [7] Dhandapani S, Rajmohan T, Palanikumar K, et al. Synthesis and characterization of dual particle (MWCT+B4C) reinforced sintered hybrid aluminum matrix composites. Part Sci Technol, 2016, 34(3): 255 doi: 10.1080/02726351.2015.1069431
    [8] Kim H H, Babu J S S, Kang C G. Hot extrusion of A356 aluminum metal matrix composite with carbon nanotube/Al2O3 hybrid reinforcement. Metall Mater Trans A, 2014, 45: 2636 doi: 10.1007/s11661-014-2185-5
    [9] Chen B, Kondoh K, Imai H, et al. Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions. Scr Mater, 2016, 113: 158 doi: 10.1016/j.scriptamat.2015.11.011
    [10] So K P, Jeong J C, Park J G, et al. SiC formation on carbon nanotube surface for improving wettability with aluminum. Compos Sci Technol, 2013, 74: 6 doi: 10.1016/j.compscitech.2012.09.014
    [11] Zhang X, Li S F, Pan B, et al. Regulation of interface between carbon nanotubes-aluminum and its strengthening effect in CNTs reinforced aluminum matrix nanocomposites. Carbon, 2019, 155: 686 doi: 10.1016/j.carbon.2019.09.016
    [12] Kang K, Bae G, Kim B, et al. Thermally activated reactions of multi-walled carbon nanotubes reinforced aluminum matrix composite during the thermal spray consolidation. Mater Chem Phys, 2012, 133(1): 495 doi: 10.1016/j.matchemphys.2012.01.071
    [13] Zhang J, Lu H, Sun Y, et al. Humidity effects on anisotropic nanofriction behaviors of aligned carbon nanotube carpets. ACS Appl Mater Interfaces, 2013, 5(19): 9247 doi: 10.1021/am403981a
    [14] Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon, 2011, 49: 533 doi: 10.1016/j.carbon.2010.09.054
    [15] Chen B, Shen J, Ye X, et al. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon, 2017, 114: 198 doi: 10.1016/j.carbon.2016.12.013
    [16] Yuan C, Zhang Z M, Tan Z Q, et al. Enhanced ductility by Mg addition in the CNT/Al-Cu composites via flake powder metallurgy. Mater Today Commun, 2021, 26: 101854 doi: 10.1016/j.mtcomm.2020.101854
    [17] Chen B, Kondoh K, Umeda J, et al. Interfacial in-situ Al2O3 nanoparticles enhance load transfer in carbon nanotube (CNT)-reinforced aluminum matrix composites. J Alloys Compd, 2019, 789: 25 doi: 10.1016/j.jallcom.2019.03.063
    [18] Yan L P, Tan Z Q, Xiong D B, et al. Research progress on the interface control in CNT/Al composites. Mater China, 2016, 35(12): 943

    鄢来朋, 谭占秋, 熊定邦, 等. 碳纳米管/铝复合材料界面调控研究进展. 中国材料进展, 2016, 35(12): 943
    [19] Fan T X, Liu Y, Yang K M, et al. Recent progress on interface structure optimization and their influencing mechanism of carbon reinforced metal matrix composites. Acta Metall Sinica, 2019, 55(1): 16

    范同祥, 刘悦, 杨昆明, 等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展. 金属学报, 2019, 55(1): 16
    [20] Li J R, Jiang X S, Liu W X, et al. Research progress on interface characteristics and strengthening mechanism in carbon nanotube reinforced aluminum matrix composites. Mater Rev, 2015, 29(1): 31

    李景瑞, 蒋小松, 刘晚霞, 等. 碳纳米管增强铝基复合材料的界面特性及增强机理研究进展. 材料导报, 2015, 29(1): 31
    [21] Hu Y S, Yu H, Xu Z F, et al. Effect of reinforcing fiber on interface and mechanical properties of fiber reinforced aluminum matrix composites. Chin J Nonferrous Met, 2019, 29(10): 2245

    胡银生, 余欢, 徐志锋, 等. 增强纤维对连续纤维增强铝基复合材料界面和力学性能的影响. 中国有色金属学报, 2019, 29(10): 2245
    [22] Guo B S, Zhang X M, Cen X, et al. Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes. Carbon, 2018, 139: 459 doi: 10.1016/j.carbon.2018.07.026
    [23] Zhou W W, Bang S, Kurita H, et al. Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon, 2016, 96: 919 doi: 10.1016/j.carbon.2015.10.016
    [24] Shan Y C, Pu B W, Liu E Z, et al. In-situ synthesis of CNTs@Al2O3 wrapped structure in aluminum matrix composites with balanced strength and toughness. Mater Sci Eng A, 2020, 797: 140058 doi: 10.1016/j.msea.2020.140058
    [25] Jiang L, Fan G L, Li Z Q, et al. An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon, 2011, 49: 1965 doi: 10.1016/j.carbon.2011.01.021
    [26] Deng C F, Zhang X X, Wang D Z, et al. Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater Lett, 2007, 61: 1725 doi: 10.1016/j.matlet.2006.07.119
    [27] Yang H Y, Yue X, Wang Z, et al. Strengthening mechanism of TiC/Al composites using Al–Ti–C/CNTs with doping alloying elements (Mg, Zn and Cu). J Mater Res Technol, 2020, 9(3): 6475 doi: 10.1016/j.jmrt.2020.04.033
    [28] Ghosh G, Sidpara A, Bandyopadhyay P P. Magnetorheological finishing of WC–Co coating using iron-B4C–CNT composite abrasives. Tribol Int, 2021, 155: 106807 doi: 10.1016/j.triboint.2020.106807
    [29] Sethi J, Jena S, Das S, et al. Synthesis and properties of Al–AlN–CuCNT and Al–Y2W3O12–CuCNT hybrid composites. Mater Sci Eng A, 2021, 810: 140919 doi: 10.1016/j.msea.2021.140919
    [30] Mtz-Enriquez A I, Gomez-Solis C, Oliva A I, et al. Enhancing the voltage and discharge times of graphene supercapacitors depositing a CNT/V2O5 layer on their electrodes. Mater Chem Phys, 2020, 244: 122698 doi: 10.1016/j.matchemphys.2020.122698
    [31] Isari A A, Mehregan M, Mehregan S, et al. Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO3/CNT heterojunction nanocomposite under US and visible light irradiations: A novel hybrid system. J Hazard Mater, 2020, 390: 122050 doi: 10.1016/j.jhazmat.2020.122050
    [32] Jafar M R, Nagesh D S. Effect of process control agent and mechanical milling on the embedment and uniform dispersion of CNTs and B4C in aluminum matrix. Mater Today Proceed, 2021, 47: 3765 doi: 10.1016/j.matpr.2021.02.573
    [33] Liu L, Li S F, Zhang X, et al. Syntheses microstructure evolution and performance of strength-ductility matched aluminum matrix composites reinforced by nano SiC-cladded CNTs. Mater Sci Eng A, 2021, 824: 141784 doi: 10.1016/j.msea.2021.141784
    [34] Chu K, Wang J, Liu Y P, et al. Creating defects on graphene basal-plane toward interface optimization of graphene/CuCr composites. Carbon, 2019, 143: 85 doi: 10.1016/j.carbon.2018.10.095
    [35] Liu G, Pan Z C, Zhang B, et al. A novel TiN coated CNTs nanocomposite CNTs@TiN supported Pt electrocatalyst with enhanced catalytic activity and durability for methanol oxidation reaction. Int J Hydrogen Energy, 2017, 42(17): 12467 doi: 10.1016/j.ijhydene.2017.03.181
    [36] Tran T Q, Lee J K Y, Chinnappan A, et al. Strong, lightweight, and highly conductive CNT/Au/Cu wires from sputtering and electroplating methods. J Mater Sci Technol, 2020, 40: 99 doi: 10.1016/j.jmst.2019.08.033
    [37] Zhao Q, Tan S L, Xie M, et al. A study on the CNTs-Ag composites prepared based on spark plasma sintering and improved electroless plating assisted by ultrasonic spray atomization. J Alloys Compd, 2018, 737: 31 doi: 10.1016/j.jallcom.2017.12.066
    [38] Zhang Y P, Wang Q, Chen G, et al. Mechanical, tribological and corrosion physiognomies of CNT-Al metal matrix composite (MMC) coatings deposited by cold gas dynamic spray (CGDS) process. Surf Coat Technol, 2020, 403: 126380 doi: 10.1016/j.surfcoat.2020.126380
    [39] Abdulameer S, Al-Sultani K F, Sh Majdi H. MWCNTs-YSZ coating deposited by plasma thermal spray on ICONEL 738 low carbon substrate. Mater Today Proceed, 2021, 60: 1241
    [40] Murugesan R, Gopal M, Murali G. Effect of Cu, Ni addition on the CNTs dispersion, wear and thermal expansion behavior of Al-CNT composites by molecular mixing and mechanical alloying. Appl Surf Sci, 2019, 495: 143542 doi: 10.1016/j.apsusc.2019.143542
    [41] Gao B, Chen G Z, Puma G L. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl Catal B, 2009, 89(3-4): 503 doi: 10.1016/j.apcatb.2009.01.009
    [42] Xi K, Li J, Wang Y W, et al. Thermal insulation and char layer mechanical properties of a novel ethylene propylene diene monomer composite reinforced with carbon nanotubes coated via chemical vapour deposition. Compos Sci Technol, 2021, 201: 108537 doi: 10.1016/j.compscitech.2020.108537
    [43] Krishna A, Evangeline T G, Aravinda L S, et al. Synthesis and thermal simulations of novel encapsulated CNT multifunctional thin-film based nanomaterial of SiO2-CNT and TiN-CNT by PVD and PECVD techniques for thermal applications. Diamond Relat Mater, 2020, 109: 108029 doi: 10.1016/j.diamond.2020.108029
    [44] Guerra-Nuñez C, Putz B, Savu R, et al. The nucleation, radial growth, and bonding of TiO2 deposited via atomic layer deposition on single-walled carbon nanotubes. Appl Surf Sci, 2021, 555: 149662 doi: 10.1016/j.apsusc.2021.149662
    [45] Wang L, Yin H, Xu R, et al. Preparation and mechanical properties of in-situ carbon nanotube/aluminum composites. Mater Sci Eng Powder Metall, 2019, 24(1): 63 doi: 10.3969/j.issn.1673-0224.2019.01.010

    王雷, 尹华, 徐润, 等. 原位碳纳米管/铝基复合材料的制备与力学性能. 粉末冶金材料科学与工程, 2019, 24(1): 63 doi: 10.3969/j.issn.1673-0224.2019.01.010
    [46] Zhang X, Hou X D, Pan D, et al. Designable interfacial structure and its influence on interface reaction and performance of MWCNTs reinforced aluminum matrix composites. Mater Sci Eng A, 2020, 793: 139783 doi: 10.1016/j.msea.2020.139783
    [47] Kim K T, Cha S I, Hong S H, et al. Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites. Mater Sci Eng A, 2006, 430: 27 doi: 10.1016/j.msea.2006.04.085
    [48] Nam D H, Cha S I, Lim B K, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al−Cu composites. Carbon, 2012, 50(7): 2417 doi: 10.1016/j.carbon.2012.01.058
    [49] Zhu K Y, Jiang C H, Ji V. Surface layer characteristics of CNT/Al–Mg–Si alloy composites treated by stress peening. Surf Coat Technol, 2017, 317: 10 doi: 10.1016/j.surfcoat.2017.03.039
    [50] Xu R, Tan Z Q, Fan G L, et al. High-strength CNT/Al–Zn–Mg–Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying. Composites Part A, 2018, 111: 1 doi: 10.1016/j.compositesa.2018.05.012
    [51] Ci L J, Ryu Z Y, Jin-Phillipp N Y, et al. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater, 2006, 54(20): 5367 doi: 10.1016/j.actamat.2006.06.031
    [52] Xu R, Tan Z Q, Xiong D B, et al. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Composites Part A, 2017, 96: 57 doi: 10.1016/j.compositesa.2017.02.017
    [53] Chen B, Zhou X Y, Zhang B, et al. Microstructure, tensile properties and deformation behaviors of aluminium metal matrix composites co-reinforced by ex-situ carbon nanotubes and in-situ alumina nanoparticles. Mater Sci Eng A, 2020, 795: 139930 doi: 10.1016/j.msea.2020.139930
    [54] Zhou W W, Yamaguchi T, Kikuchi K, et al. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater, 2017, 125: 369 doi: 10.1016/j.actamat.2016.12.022
    [55] Yu Z Y, Tan Z Q, Xu R, et al. Enhanced load transfer by designing mechanical interfacial bonding in carbon nanotube reinforced aluminum composites. Carbon, 2019, 146: 155 doi: 10.1016/j.carbon.2019.01.108
    [56] Chen X, Huang G S, Liu S S, et al. Grain refinement and mechanical properties of pure aluminum processed by accumulative extrusion bonding. Trans Nonferrous Met Soc China, 2019, 29: 437 doi: 10.1016/S1003-6326(19)64953-8
    [57] Xu R. Investigation on the Microstructure Tailoring and Strength-ductility Behavior in Carbon Nanotube Reinforced Al Matrix Composites [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2019

    徐润. 碳纳米管增强铝基复合材料的微结构调控与强塑性研究[学位论文]. 上海: 上海交通大学, 2019
    [58] Liu Z Y, Ma K, Fan G H, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al–Cu–Mg nanocomposites by material parameter optimisation. Carbon, 2020, 157: 602 doi: 10.1016/j.carbon.2019.10.080
    [59] Fu X W, Tan Z Q, Ma Z Q, et al. Powder assembly & alloying to CNT/Al–Cu–Mg composites with trimodal grain structure and strength-ductility synergy. Composites Part B, 2021, 225: 109271 doi: 10.1016/j.compositesb.2021.109271
    [60] Choi H J, Min B H, Shin J H, et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes. Composites Part A, 2011, 42(10): 1438 doi: 10.1016/j.compositesa.2011.06.008
    [61] He T B, He X L, Tang P J, et al. The use of cryogenic milling to prepare high performance Al2009 matrix composites with dispersive carbon nanotubes. Mater Des, 2017, 114: 373 doi: 10.1016/j.matdes.2016.11.008
    [62] Liu Z Y, Xiao B L, Wang W G, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon, 2012, 50(5): 1843 doi: 10.1016/j.carbon.2011.12.034
    [63] Liu Z Y, Xiao B L, Wang W G, et al. Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon, 2013, 62: 35 doi: 10.1016/j.carbon.2013.05.049
    [64] Nam D H, Kim Y K, Cha S I, et al. Effect of CNTs on precipitation hardening behavior of CNT/Al–Cu composites. Carbon, 2012, 50(13): 4809 doi: 10.1016/j.carbon.2012.06.005
    [65] Meng X, Liu T, Shi C S, et al. Synergistic effect of CNTs reinforcement and precipitation hardening in in-situ CNTs/Al–Cu composites. Mater Sci Eng A, 2015, 633: 103 doi: 10.1016/j.msea.2015.03.007
    [66] Liu Z Y, Xiao B L, Wang W G, et al. Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon, 2014, 69: 264 doi: 10.1016/j.carbon.2013.12.025
    [67] Shin S E, Moon S M, Lee D Y, et al. Development of press-and-sinter Al2024-based nanocomposites reinforced with multiwalled carbon nanotubes. J Compos Mater, 2016, 50(26): 3619 doi: 10.1177/0021998315623081
    [68] Ma K, Liu Z Y, Liu B S, et al. Improving ductility of bimodal carbon nanotube/2009Al composites by optimizing coarse grain microstructure via hot extrusion. Composites Part A, 2021, 140: 106198 doi: 10.1016/j.compositesa.2020.106198
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  1832
  • HTML全文浏览量:  91
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 刊出日期:  2024-02-28

目录

    /

    返回文章
    返回