无压烧结SiC-金刚石多晶材料致密化及物理性能研究

张秀玲 陈宇红 戚武彬 张强 海万秀

张秀玲, 陈宇红, 戚武彬, 张强, 海万秀. 无压烧结SiC-金刚石多晶材料致密化及物理性能研究[J]. 粉末冶金技术, 2024, 42(2): 165-169, 176. doi: 10.19591/j.cnki.cn11-1974/tf.2021090009
引用本文: 张秀玲, 陈宇红, 戚武彬, 张强, 海万秀. 无压烧结SiC-金刚石多晶材料致密化及物理性能研究[J]. 粉末冶金技术, 2024, 42(2): 165-169, 176. doi: 10.19591/j.cnki.cn11-1974/tf.2021090009
ZHANG Xiuling, CHEN Yuhong, QI Wubin, ZHANG Qiang, HAI Wanxiu. Densification and physical properties of SiC-diamond polycrystalline materials produced by pressureless sintering[J]. Powder Metallurgy Technology, 2024, 42(2): 165-169, 176. doi: 10.19591/j.cnki.cn11-1974/tf.2021090009
Citation: ZHANG Xiuling, CHEN Yuhong, QI Wubin, ZHANG Qiang, HAI Wanxiu. Densification and physical properties of SiC-diamond polycrystalline materials produced by pressureless sintering[J]. Powder Metallurgy Technology, 2024, 42(2): 165-169, 176. doi: 10.19591/j.cnki.cn11-1974/tf.2021090009

无压烧结SiC-金刚石多晶材料致密化及物理性能研究

doi: 10.19591/j.cnki.cn11-1974/tf.2021090009
详细信息
    通讯作者:

    E-mail: lyhcheng@163.com

  • 中图分类号: TF125;TQ127.2

Densification and physical properties of SiC-diamond polycrystalline materials produced by pressureless sintering

More Information
  • 摘要: 以AlN−Y2O3−Sc2O3为液相烧结助剂,添加不同质量分数金刚石,经无压烧结制备SiC-金刚石多晶材料。采用扫描电镜观察多晶材料显微结构,利用激光闪射法测量其热扩散系数和热导率。研究了金刚石质量分数(1.0%、2.5%、5.0%)和粒度(0.25 μm、1.00 μm)对SiC陶瓷材料致密化行为和力学性能的影响。结果表明,金刚石质量分数低于5.0%,烧结后的材料相对密度均超过94%;金刚石含量为5.0%的样品相对密度远远低于其他样品。SiC多晶材料的相对密度随金刚石添加量的增加而降低,原料中添加过量的金刚石会降低材料的相对密度。在实验条件下,多晶材料晶粒尺寸没有发生异常长大,硬度为16~18 GPa,断裂韧性为3.8~4.4 MPa·m1/2,抗弯强度为239~540 MPa。材料的热导率和热扩散系数随着温度的升高而降低,气孔是影响复合材料热导率的主要因素。
  • 图  1  试样表面显微形貌:(a)S1;(b)S2;(c)S4;(d)S5

    Figure  1.  SEM of the samples: (a) S1; (b) S2; (c) S4; (d) S5

    图  2  试样晶粒粒径分布:(a)S1;(b)S2;(c)S4;(d)S5

    Figure  2.  Grain diameter distribution of the samples: (a) S1; (b) S2; (c) S4; (d) S5

    图  3  试样断口显微形貌:(a)S1;(b)S4

    Figure  3.  Fracture SEM images of the samples: (a) S1; (b) S4

    图  4  试样在不同温度下的热导率

    Figure  4.  Thermal conductivity of the samples at the different temperatures

    图  5  试样在不同温度下的热扩散系数

    Figure  5.  Thermal diffusion coefficient of the samples at the different temperatures

    表  1  实验主要原材料

    Table  1.   Main raw materials in the experimental

    原料 粒径,D50 / μm 纯度 / % 生产厂家
    SiC 0.70 98.5 H.C. Starck UF-15
    金刚石 0.25 99.9 明源金刚石微粉厂
    1.00
    AlN 5.00 ≥99.5 阿拉丁试剂有限公司
    Y2O3 5.00 ≥99.5 阿拉丁试剂有限公司
    Sc2O3 5.00 ≥99.5 阿拉丁试剂有限公司
    下载: 导出CSV

    表  2  实验原料配比

    Table  2.   Components of the experimental materials

    试样质量分数 / %金刚石粒径 / μm
    烧结助剂SiC金刚石
    S18.091.01.00.25
    S28.089.52.50.25
    S38.087.05.00.25
    S48.091.01.01.00
    S58.089.52.51.00
    S68.087.05.01.00
    下载: 导出CSV

    表  3  试样烧结性能

    Table  3.   Sintering properties of the specimens

    试样体积密度 / (g·cm−3)相对密度 / %气孔率 / %
    S13.2297.92.1
    S23.1294.65.4
    S32.7081.718.3
    S43.1896.63.4
    S53.2097.12.9
    S62.7482.917.0
    下载: 导出CSV

    表  4  试样的力学性能

    Table  4.   Mechanical properties of the specimens

    试样维氏硬度 / GPa断裂韧性 / (MPa·m1/2)抗弯强度 / MPa
    S118.12±1.004.32±0.67413±17
    S217.19±1.033.88±0.56239±10
    S416.52±1.344.46±0.41542±19
    S518.09±1.254.20±0.69302±16
    下载: 导出CSV
  • [1] Balog M, Šajgalı́k P, Hnatko M, et al. Nano- versus macro-hardness of liquid phase sintered SiC. J Eur Ceram Soc, 2005, 25(4): 529 doi: 10.1016/j.jeurceramsoc.2004.01.026
    [2] Ciudad E, Borrero-López O, Rodríguez-Rojas F, et al. Effect of intergranular phase chemistry on the sliding-wear resistance of pressureless liquid-phase-sintered alpha-SiC. J Eur Ceram Soc, 2012, 32(2): 511 doi: 10.1016/j.jeurceramsoc.2011.09.011
    [3] Rohit M, Kim Y H, Kim Y W. Effect of additive content on the mechanical and thermal properties of pressureless liquid-phase sintered SiC. J Asian Ceram Soc, 2020, 8(2): 448 doi: 10.1080/21870764.2020.1749376
    [4] Zhang J X, Jiang D L, Yao X M, et al. Study of pressureless sintering and thermal conductivity for SiC-AlN composites. Vac Electron, 2014(5): 1 doi: 10.3969/j.issn.1002-8935.2014.05.001

    张景贤, 江东亮, 姚秀敏, 等. SiC-AlN复相陶瓷材料的无压烧结和导热性能. 真空电子技术, 2014(5): 1 doi: 10.3969/j.issn.1002-8935.2014.05.001
    [5] Lu G H, Zhu D D, Zhou H W. Effect of sintering aid on properties of silicon carbide ceramics by pressureless liquid phase sintering. J Yili Normal Univ Nat Sci, 2019, 13(2): 25

    鹿桂花, 朱丹丹, 周恒为. 助烧剂对无压液相烧结碳化硅陶瓷性能的影响. 伊犁师范学院学报(自然科学版), 2019, 13(2): 25
    [6] A Ward, Broido D A, Stewart D A, et al. Ab initio theory of the lattice thermal conductivity in diamond. Phys Rev B, 2009, 80(12): 125203: 1
    [7] Wang X L. Preparation and Properties of Diamond/Silicon Carbide Composites by Silicon Liquid Infiltration [Dissertation]. Beijing: University of Science and Technology Beijing, 2021

    王旭磊. 液相硅熔渗制备金刚石/碳化硅复合材料及性能研究[学位论文]. 北京: 北京科技大学, 2021
    [8] K Shimoda, Hinoki T, Kohyama A. Effect of carbon nanofibers (CNFs) content on thermal and mechanical properties of CNFs/SiC nanocomposites. Compos Sci Technol, 2010, 70(2): 387 doi: 10.1016/j.compscitech.2009.11.013
    [9] Li Q S, Zhang Y J, Gong H Y, et al. Effects of graphene on the thermal conductivity of pressureless-sintered SiC ceramics. Ceram Int, 2015, 41(10): 13547 doi: 10.1016/j.ceramint.2015.07.149
    [10] Seo Y K, Kim Y W, Nishimura T, et al. High thermal conductivity of spark plasma sintered silicon carbide ceramics with yttria and scandia. J Am Ceram Soc, 2017, 100(4): 1290 doi: 10.1111/jace.14748
    [11] Cho T Y, Kim Y W, Kim K J. Thermal, electrical, and mechanical properties of pressureless sintered silicon carbide ceramics with yttria-scandia-aluminum nitride. J Eur Ceram Soc, 2016, 36(11): 2659 doi: 10.1016/j.jeurceramsoc.2016.04.014
    [12] Nakano H, Watari K, Kinemuchi Y, et al. Microstructural characterization of high-thermal-conductivity SiC ceramics. J Eur Ceram Soc, 2004, 24(14): 3685 doi: 10.1016/j.jeurceramsoc.2003.12.019
    [13] Sun X Y, Chen H, Wang S Q, et al. Preparation and thermal conductivity of SiC-diamond ceramics. Refractories, 2021, 55(2): 131

    孙祥运, 陈浩, 王顺琴, 等. 碳化硅-金刚石陶瓷的制备及其导热性能. 耐火材料, 2021, 55(2): 131
    [14] Zhang R, Wang H L, Xu H L. Ceramics Processing. Beijing: Chemical Industry Press, 2013

    张锐, 王海龙, 许红亮. 陶瓷工艺学. 北京: 化学工业出版社, 2013
    [15] Zhang L, Yang P X, Zhang Y J, et al. Diamond-copper composites with high thermal conductivity used for electronic packaging: fabrication techniques, performance influencing factors and interfacial strengthening methods. Mater Rev, 2018, 32(11): 1842

    赵龙, 宋平新, 张迎九, 等. 高导热金刚石/铜电子封装材料: 制备技术、性能影响因素、界面结合改善方法. 材料导报, 2018, 32(11): 1842
    [16] Li Q S. Preparation and Application Research of High Thermal Conductivity SiC Ceramics [Dissertation]. Jinan: Shandong University, 2016

    李其松. 高热导率SiC陶瓷材料制备及应用研究[学位论文]. 济南: 山东大学, 2016
    [17] Kingery W D. Introduction to Ceramics. Transl by Tsinghua University. Beijing: China Architecture Publishing, 1982

    Kingery W D. 陶瓷导论. 清华大学译. 北京: 中国建筑工业出版社, 1982
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  48
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回