导流管参数对真空紧耦合气雾化法制备Fe–Cr合金粉末的影响

苏才津 孙耀宁 董开基 尹燕 张瑞华 姜立恒

苏才津, 孙耀宁, 董开基, 尹燕, 张瑞华, 姜立恒. 导流管参数对真空紧耦合气雾化法制备Fe–Cr合金粉末的影响[J]. 粉末冶金技术, 2024, 42(1): 68-74. doi: 10.19591/j.cnki.cn11-1974/tf.2021090016
引用本文: 苏才津, 孙耀宁, 董开基, 尹燕, 张瑞华, 姜立恒. 导流管参数对真空紧耦合气雾化法制备Fe–Cr合金粉末的影响[J]. 粉末冶金技术, 2024, 42(1): 68-74. doi: 10.19591/j.cnki.cn11-1974/tf.2021090016
SU Caijin, SUN Yaoning, DONG Kaiji, YIN Yan, ZHANG Ruihua, JIANG Liheng. Effect of melt delivery nozzle parameters on Fe–Cr alloy powders prepared by vacuum close-coupled gas atomization[J]. Powder Metallurgy Technology, 2024, 42(1): 68-74. doi: 10.19591/j.cnki.cn11-1974/tf.2021090016
Citation: SU Caijin, SUN Yaoning, DONG Kaiji, YIN Yan, ZHANG Ruihua, JIANG Liheng. Effect of melt delivery nozzle parameters on Fe–Cr alloy powders prepared by vacuum close-coupled gas atomization[J]. Powder Metallurgy Technology, 2024, 42(1): 68-74. doi: 10.19591/j.cnki.cn11-1974/tf.2021090016

导流管参数对真空紧耦合气雾化法制备Fe–Cr合金粉末的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021090016
基金项目: 新疆维吾尔自治区科技援疆项目计划资助项目(2020E0264);海上风电高速激光熔覆防腐涂层制备工艺及应用资助项目(SDZX2020009)
详细信息
    通讯作者:

    E-mail: xj_syn@126.com

  • 中图分类号: TL214; TF123

Effect of melt delivery nozzle parameters on Fe–Cr alloy powders prepared by vacuum close-coupled gas atomization

More Information
  • 摘要: 采用真空紧耦合气雾化法制备Fe–Cr合金粉末,研究了导流管直径与导流管伸出长度对Fe–Cr合金粉末粒度分布、收得率、中位粒径(D50)的影响。结果表明,在其他工艺参数不变的情况下,当导流管直径从4.5 mm增大到6.0 mm时,Fe–Cr合金粉末累积粒度分布曲线右移,中位粒径增大,细粉收得率减小,粉末流动性减小,松装密度减小;当导流管伸出长度由2.0 mm增加到2.5 mm时,Fe–Cr合金粉末累积粒度分布曲线左移,中位粒径减小,细粉收得率增加,粉末流动性增加,松装密度升高。综上所述,雾化压力3.8 MPa,过热度250 ℃,导流管直径4.5 mm,导流管伸出长度2.5 mm,制备得到的Fe–Cr合金粉末综合性能最优。
  • 图  1  国产真空气雾化制粉设备:(a)设备正面总成图;(b)设备细节示意图

    Figure  1.  Vacuum gas atomization equipment: (a) front assembly diagram of equipment; (b) details of equipment

    图  2  导流管直径对Fe–Cr合金粉末质量的影响:(a)粉末累积粒度分布;(b)各粒度段粉末收得率;(c)粉末中位粒径

    Figure  2.  Effect of melt delivery nozzle diameter on the powder quality of the Fe–Cr alloy powders: (a) cumulative particle size distribution; (b) yield in each particle size section; (c) median particle size

    图  3  不同导流管直径下制备的粉末表面形貌:(a)4.5 mm;(b)5.0 mm;(c)6.0 mm

    Figure  3.  SEM images of the Fe–Cr alloy powders prepared with the different melt delivery nozzle diameters: (a) 4.5 mm; (b) 5.0 mm; (c) 6.0 mm

    图  4  导流管伸出长度对Fe–Cr合金粉末质量的影响:(a)粉末累积粒度分布;(b)各粒度段粉末收得率;(c)粉末中位粒径

    Figure  4.  Effect of melt delivery nozzle length on the powder quality of the Fe–Cr alloy powders: (a) cumulative particle size distribution; (b) yield in each particle size section; (c) median particle size

    图  5  不同导流管伸出长度下制备的粉末表面形貌:(a)2.0 mm;(b)2.5 mm

    Figure  5.  SEM images of the Fe–Cr alloy powders with the different melt delivery nozzle lengths: (a) 2.0 mm; (b) 2.5 mm

    图  6  Fe–Cr合金粉末表面元素面扫图:(a)粉末形貌;(b)Fe;(C)Cr;(d)Mn;(e)Mo;(f)Ni;(g)Si;(h)C

    Figure  6.  Surface map scanning of the Fe–Cr alloy powders: (a) powder morphology; (b) Fe; (c) Cr; (d) Mn; (e) Mo; (f) Ni; (g) Si; (h) C

    表  1  Fe–Cr合金粉末元素名义成分(质量分数)

    Table  1.   Elements nominal composition of the Fe–Cr alloy powders %

    CrMnNiMoSiCFe
    14.0~18.00.1~1.00.5~2.00.1~1.00.1~2.00.1~2.0余量
    下载: 导出CSV

    表  2  不同导流管直径下的粉末流动性与松装密度

    Table  2.   Fluidity and apparent density of the Fe–Cr alloy powders under the different melt delivery nozzle diameters

    导流管直径 / mm粉末流动性
    (每50 g)/ s
    粉末松装密度 /
    (g·cm−3)
    4.523.04.77
    5.024.54.49
    6.026.64.26
    下载: 导出CSV

    表  3  不同导流管伸出长度下的粉末流动性与松装密度

    Table  3.   Fluidity and apparent density of the Fe–Cr alloy powders with the different melt delivery nozzle lengths

    导流管伸出长度 / mm 粉末流动性
    (每50 g)/ s
    粉末松装密度 /
    (g·cm−3)
    2.0 27.6 4.58
    2.5 23.0 4.77
    下载: 导出CSV

    表  4  图6(a)中A、B、C、D点Fe–Cr合金粉末颗粒表面能谱分析

    Table  4.   EDS analysis of A, B, C, D in Fig. 6(a)

    位置 质量分数 / %
    Fe Cr Si Mo Mn Ni C
    A 76.9 14.8 1.2 0.1 0.2 1.0 5.6
    B 74.2 14.7 1.4 0.4 0.3 1.0 8.1
    C 76.5 14.7 1.2 0.3 0.6 0.9 5.9
    D 77.2 15.3 1.0 0.2 0.3 0.7 5.3
    名义含量 余量 14.0~18.0 0.1~1.0 0.5~2.0 0.1~1.0 0.1~2.0 0.1~2.0
    下载: 导出CSV
  • [1] Guo K K, Chen J, Shang S, et al. Numerical simulation of atomization process of nickel-based alloy powders prepared by vacuum induction melting gas atomization. Vibroeng Procedia, 2020, 32: 185 doi: 10.21595/vp.2020.21386
    [2] Zeoli N, Tabbara H, Gu S. CFD modeling of primary breakup during metal powder atomization. Chem Eng Sci, 2011, 66(24): 6498 doi: 10.1016/j.ces.2011.09.014
    [3] Dawes J, Bowerman R, Trepleton R. Introduction to the additive manufacturing powder metallurgy supply chain. Johnson Matthey Technol Rev, 2015, 59(3): 243 doi: 10.1595/205651315X688686
    [4] Amada S, Ohyagi T, Haruyama M. Evaluation of splat profile for droplet impingement. Surf Coat Technol, 1999, 115(2): 184
    [5] Hallen H. A study of size distribution and microstructure of gas atomized powder. Met Powder Rep, 1997, 52(4): 46
    [6] Wang B Y. The Research of Close-Coupled Gas Atomization Technology for Additive Manufacturing 18Ni300 Alloy Powders [Dissertation]. Shanghai: Shanghai Research Institute of Materials, 2019

    王博亚. 增材制造用18Ni300粉末的紧耦合气雾化制备技术研究[学位论文]. 上海: 上海材料研究所, 2019
    [7] Zhang S. Study on the Plasma Device Development for Metal Powders Preparation and Powders ’ Quality Performance Research [Dissertation]. Changchun: Changchun University of Technology, 2017

    张爽. 等离子弧制备金属粉末装置研制及粉末性能研究[学位论文]. 长春: 长春工业大学, 2017
    [8] Ma Y, Wang X, Hu Y, et al. Study on preparation of 316L powder for MIM by vacuum inert gas atomization. Thermal Spray Technol, 2017, 9(1): 60

    马尧, 王旭, 胡宇, 等. 真空气雾化制备MIM用316L粉末研究. 热喷涂技术, 2017, 9(1): 60
    [9] Ozbilen S. Influence of superheat temperature on particle size and shape of gas atomized copper powders. Met Powder Rep, 1992, 47(1): 49
    [10] Lü H B, Mu Y F, Li X J, et al. Influences of melt superheat on atomization procedure. J Cent South Univ Technol, 1997, 28(2): 149

    吕海波, 母育锋, 李新军, 等. 熔体过热度对雾化过程的影响. 中南工业大学学报, 1997, 28(2): 149
    [11] Ma Y, Bao J F, Hu Y, et al. The impact of vacuum atomization parameters on the particle size distribution and morphology. Thermal Spray Technol, 2014, 6(1): 45 doi: 10.3969/j.issn.1674-7127.2014.01.008

    马尧, 鲍君峰, 胡宇, 等. 真空气雾化参数对粉末粒度及形貌的影响研究. 热喷涂技术, 2014, 6(1): 45 doi: 10.3969/j.issn.1674-7127.2014.01.008
    [12] He X Y, Li X G, Huang Y H, et al. Satellite-particle control technique based on gas-flow-regulation during gas atomization process. Powder Metall Technol, 2022, 40(4): 302

    赫新宇, 黎兴刚, 黄禹赫, 等. 气体雾化制粉工艺中基于气体整流的卫星粉控制技术. 粉末冶金技术, 2022, 40(4): 302
    [13] Li B, Liang X, Earthman J C. Two dimensional modeling of momentum and thermal behavior during spray atomization of γ-TiAl. Acta Mater, 1996, 44(6): 2409 doi: 10.1016/1359-6454(95)00335-5
    [14] Mullis A M, McCarthy I N, Cochrane R F. High speed imaging of the flow during close-coupled gas atomisation: Effect of melt delivery nozzle geometry. J Mater Process Technol, 2011, 211(9): 1471 doi: 10.1016/j.jmatprotec.2011.03.020
    [15] Yin Y, Dong K J, Li Z H, et al. Preparation of Fe–Cr alloy powder by close-coupled vacuum induction melting gas atomization for laser cladding. Chin J Lasers, 2021, 48(14): 1402014

    尹燕, 董开基, 李治恒, 等. 激光熔覆用Fe–Cr合金粉末的紧耦合真空气雾化制备技术. 中国激光, 2021, 48(14): 1402014
    [16] Motaman S, Mullis A M, Cochrane R F, et al. Numerical and experimental investigations of the effect of melt delivery nozzle design on the open to closed-wake transition in closed-coupled gas atomization. Metall Mater Trans B, 2015, 46(4): 1990 doi: 10.1007/s11663-015-0346-6
    [17] Wang P, Li J, Wang X, et al. Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology. Chin Phys B, 2021, 30(2): 027502 doi: 10.1088/1674-1056/abc167
    [18] Wang P, Li J, Liu H S, et al. Process modeling gas atomization of close-coupled ring-hole nozzle for 316L stainless steel powder production. Chin Phys B, 2021, 30(5): 057502 doi: 10.1088/1674-1056/abd771
    [19] Kim D K, Kim Y I, Kim Y D, et al. Comparative study for microstructural characterisations and properties of Ti-Y powders produced by vacuum induction gas atomization cold crucible process. Powder Metall, 2021, 64(5): 396 doi: 10.1080/00325899.2021.1921962
    [20] Guo Y B. Study on Back Pressure of Close-Coupled Vacuum Gas Atomizer and Preparation of Fine Powder [Dissertation]. Changsha: Central South University, 2009

    郭屹宾. 紧耦合雾化喷嘴的反压和微细粉末的制备研究[学位论文]. 长沙: 中南大学, 2009
    [21] Wang M R, Chen P J. Characteristics of an internal-mixing atomiser with supersonic configuration for metal powder production. Mater Res Innovations, 2015, 19(Suppl 8): 8
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1826
  • HTML全文浏览量:  34
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 刊出日期:  2024-02-28

目录

    /

    返回文章
    返回