Abstract:
The formation mechanism and process control of the common defects in selective laser melting GH4169 alloys were briefly introduced, such as spheroidization and holes. The effects of laser power, scanning rate, and powder thickness on the microstructure and mechanical properties of the GH4169 alloys during selective laser melting were emphatically analyzed, and the influences of heat treatment and particle reinforcement on the microstructure and mechanical properties of GH4169 alloy were investigated. Finally, the prospect of the selective laser melting GH4169 alloys was presented from the aspects of process control trend and material strengthening design. It was considered that the design and forming of the particle-reinforced GH4169 composites by selective laser melting were the effective way to further improve the performance of the GH4169 alloys.