FeAl-316SS接头的反应行为、显微组织与力学性能

蔡小平 尹进南 张志鹏 冯培忠

蔡小平, 尹进南, 张志鹏, 冯培忠. FeAl-316SS接头的反应行为、显微组织与力学性能[J]. 粉末冶金技术, 2024, 42(2): 107-114. doi: 10.19591/j.cnki.cn11-1974/tf.2021110009
引用本文: 蔡小平, 尹进南, 张志鹏, 冯培忠. FeAl-316SS接头的反应行为、显微组织与力学性能[J]. 粉末冶金技术, 2024, 42(2): 107-114. doi: 10.19591/j.cnki.cn11-1974/tf.2021110009
CAI Xiaoping, YIN Jinnan, ZHANG Zhipeng, FENG Peizhong. Reaction behavior, microstructure, and mechanical properties of FeAl-316 stainless steel joints[J]. Powder Metallurgy Technology, 2024, 42(2): 107-114. doi: 10.19591/j.cnki.cn11-1974/tf.2021110009
Citation: CAI Xiaoping, YIN Jinnan, ZHANG Zhipeng, FENG Peizhong. Reaction behavior, microstructure, and mechanical properties of FeAl-316 stainless steel joints[J]. Powder Metallurgy Technology, 2024, 42(2): 107-114. doi: 10.19591/j.cnki.cn11-1974/tf.2021110009

FeAl-316SS接头的反应行为、显微组织与力学性能

doi: 10.19591/j.cnki.cn11-1974/tf.2021110009
基金项目: 国家自然科学基金资助项目(51611130064)
详细信息
    通讯作者:

    E-mail: pzfeng@cumt.edu.cn; pzfeng@cumt.edu.cn

  • 中图分类号: TF124;TG441.2

Reaction behavior, microstructure, and mechanical properties of FeAl-316 stainless steel joints

More Information
  • 摘要: 采用热爆反应与粉末冶金相结合的工艺实现了FeAl金属间化合物与316不锈钢(316SS)的有效连接,研究了连接温度(700、800、900 ℃)对界面成分组成和力学性能的影响。结果表明,当加热到637 ℃时,FeAl反应层温度瞬间升高到1050 ℃,发生明显的热爆反应,并伴随持续约15 s的剧烈放热。随着温度从700 ℃提高到900 ℃,界面由Fe-316SS、316SS(Al)交替组成的形式转变为由FeAl-316SS(Al)-316SS组成。三种温度下均形成良好的冶金结合,当连接温度为800 ℃时,抗剪切强度可达75 MPa。
  • 图  1  Fe−Al反应层随炉升温的实际温度及炉膛温度

    Figure  1.  Actual temperature and the furnace temperature of the Fe−Al reactive layer during heating process

    图  2  Fe−Al反应层示差扫描量热曲线

    Figure  2.  DSC curve of the Fe−Al reactive layer

    图  3  不同实验温度下形成的Fe−Al反应层X射线衍射图谱

    Figure  3.  XRD patterns of the Fe−Al reactive layer at different temperatures

    图  4  Fe−Al/316SS接头截面扫描电镜背散射模式形貌和能谱分析:(a)和(d)700 ℃;(b)和(e)800 ℃;(c)和(f)900 ℃;(g)和(f)为900 ℃时过渡层区域能谱线扫描结果

    Figure  4.  SEM-BSE images and EDS analysis of the Fe−Al/316SS joints in cross section: (a) and (d) 700 ℃; (b) and (e) 800 ℃; (c) and (f) 900 ℃; (g) and (f) the EDS line scanning result in the transition region at 900 ℃

    图  5  Fe−Al/316SS接头抗剪强度-位移曲线

    Figure  5.  Shear strength-displacement curves of the Fe−Al/316SS joints

    图  6  700 ℃连接的Fe−Al/316SS接头剪切测试结果:(a)和(b)断口显微形貌;(c)和(d)能谱分析

    Figure  6.  Fracture surface SEM images ((a) and (b)) and EDS patterns ((c) and (d)) of the Fe−Al/316SS joints joined at 700 ℃ after shear test

    图  7  800 ℃连接的Fe−Al/316SS接头剪切测试断口显微形貌

    Figure  7.  Fracture surface SEM images of the Fe−Al/316SS joints joined at 800 ℃ after shear test

    图  8  900 ℃连接的Fe−Al/316SS接头剪切测试结果:(a)和(b)断口显微形貌;(c)和(d)能谱分析

    Figure  8.  Fracture surface SEM images ((a) and (b)) and EDS patterns ((c) and (d)) of the Fe−Al/316SS joints joined at 900 ℃ after shear test

    表  1  图4标注位置能谱分析结果(质量分数)

    Table  1.   EDS analysis results in Fig.4 %

    位置FeAlCrNi物相
    168.995.7016.508.81316SS (Al)
    299.860.14Fe
    366.8333.17FeAl
    446.8453.16Fe2Al5
    570.564.5118.006.93316SS (Al)
    669.1230.88FeAl
    751.2348.77FeAl2
    869.855.3617.237.56316SS (Al)
    968.3131.69FeAl
    下载: 导出CSV
  • [1] Wang Y, Deng N, Tong Z F, et al. The research progress on preparation of Fe−Al intermetallic compounds and coatings. Mater Rep, 2021, 35(21): 21221

    王优, 邓楠, 佟振峰, 等. 铁铝金属间化合物及其涂层制备的研究进展. 材料导报, 2021, 35(21): 21221
    [2] Wen X, Huang B S, Yu H Y, et al. Preparation and antioxidation properties of Fe−Al−x%Si intermetallic compound porous materials. Nonferrous Met Eng, 2020, 10(9): 7

    文雄, 黄本生, 余鸿雁, 等. Fe−Al−x%Si金属间化合物多孔材料的制备及抗氧化性能研究. 有色金属工程, 2020, 10(9): 7
    [3] Zhou J, Bai Y P, Cheng C, et al. Research status of FeAl intermetallic compounds with B2 structure. Foundry Technol, 2019, 40(8): 858

    周瑾, 白亚平, 成超, 等. B2结构FeAl金属间化合物研究现状. 铸造技术, 2019, 40(8): 858
    [4] Guo J T, Zhou L Z, Li G S. High temperature structural intermetallics and their strengthening-softening mechanisms. Chin J Nonferrous Met, 2011, 21(1): 1

    郭建亭, 周兰章, 李谷松. 高温结构金属间化合物及其强韧化机理. 中国有色金属学报, 2011, 21(1): 1
    [5] Deevi S C. Advanced intermetallic iron aluminide coatings for high temperature applications. Prog Mater Sci, 2021, 118: 100769
    [6] Wang F, Liu G Y, Yang J J, et al. Application and development of metal filter materials in high-temperature gas filtration. Powder Metall Technol, 2018, 36(3): 230

    王凡, 刘冠颖, 杨军军, 等. 金属过滤材料在高温除尘中的应用与发展. 粉末冶金技术, 2018, 36(3): 230
    [7] Gao H Y, He Y H, Shen P Z, et al. Welding of FeAl porous material and stainless steel. Chin J Nonferrous Met, 2009, 19(1): 90

    高海燕, 贺跃辉, 沈培智, 等. FeAl多孔材料与不锈钢的焊接. 中国有色金属学报, 2009, 19(1): 90
    [8] Li Y J, Wang J. Vacuum diffusion welding technology of Fe3Al/18-8 dissimilar materials. Mater Sci Technol, 2004(1): 45

    李亚江, 王娟. Fe3Al/18-8异种材料真空扩散焊工艺研究. 材料科学与工艺, 2004(1): 45
    [9] Torun O, Celikyürek I, Baksan B. Friction welding of cast Fe−28Al alloy. Intermetallics, 2011, 19(7): 1076
    [10] Shi Z M, Cao J B, Han F S. Preparation and characterization of Fe−Al intermetallic layer on the surface of T91 heat-resistant steel. J Nucl Mater, 2014, 447(1-3): 77
    [11] Huang G Q, Zhang G K, Luo C Y, et al. A review on hydrogen embrittlement of Fe−Al intermetallics. Mater Rev, 2018, 32(11): 1878 doi: 10.11896/j.issn.1005-023X.2018.11.015

    黄广棋, 张桂凯, 罗朝以, 等. Fe−Al金属间化合物氢脆效应研究现状. 材料导报, 2018, 32(11): 1878 doi: 10.11896/j.issn.1005-023X.2018.11.015
    [12] Wang J H, Cheng J, Bai P K, et al. Investigation of joining Al−C−Ti cermets and Ti6Al4V by combustion synthesis. Mater Sci Eng B, 2012, 177(19): 1703
    [13] Matsuda T, Maruko T, Ogura T, et al. Self-heating bonding of A5056 aluminum alloys using exothermic heat of combustion synthesis. Mater Des, 2017, 113: 109
    [14] Cai X P, Ren X R, Sang C C, et al. Dissimilar joining mechanism, microstructure and properties of Ni to 316 stainless steel via Ni−Al thermal explosion reaction. Mater Sci Eng A, 2021, 807: 140868
    [15] Yuan R H, Jiang P. Ferrosilicon nitride and its application in refractory materials. Powder Metall Technol, 2019, 37(1): 74

    袁若寒, 蒋朋. 氮化硅铁及其在耐火材料中的应用. 粉末冶金技术, 2019, 37(1): 74
    [16] Borkar T, Nag S, Ren Y, et al. Reactive spark plasma sintering (SPS) of nitride reinforced titanium alloy composites. J Alloys Compd, 2014, 617: 933
    [17] Thiele M, Hermann M, Müller C, et al. Reactive and non-reactive preparation of B6O materials by FAST/SPS. J Eur Ceram Soc, 2015, 35(1): 47
    [18] Jiao X Y, Liu Y N, Cai X P, et al. Progress of porous Al-containing intermetallics fabricated by combustion synthesis reactions: a review. J Mater Sci, 2021, 56: 11605
    [19] Lee W B, Schmuecker M, Mercardo U A, et al. Interfacial reaction in steel–aluminum joints made by friction stir welding. Scr Mater, 2006, 55(4): 355
    [20] Li X Y, Zhang L, Qin M L, et al. Effect of jet milling processing on microstructure and mechanical properties of the sintered tungsten powders. Powder Metall Technol, 2021, 39(3): 251

    李星宇, 章林, 秦明礼, 等. 气流磨处理对烧结钨粉微观组织和力学性能的影响. 粉末冶金技术, 2021, 39(3): 251
    [21] Xu P Z, Hua X M, Shen C, et al. Formation of Fe5Si3 precipitate in the Fe2Al5 intermetallic layer of the Al/steel dissimilar arc welding joint: A transmission electron microscopy (TEM) study. Mater Charact, 2021, 178: 111236
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  19
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 刊出日期:  2024-04-29

目录

    /

    返回文章
    返回