热处理对Fe−6.5%Si磁粉芯性能的影响

邱玥 贺弋海 王义富 林少川 孔辉 王锐

邱玥, 贺弋海, 王义富, 林少川, 孔辉, 王锐. 热处理对Fe−6.5%Si磁粉芯性能的影响[J]. 粉末冶金技术, 2024, 42(2): 177-183. doi: 10.19591/j.cnki.cn11-1974/tf.2021120001
引用本文: 邱玥, 贺弋海, 王义富, 林少川, 孔辉, 王锐. 热处理对Fe−6.5%Si磁粉芯性能的影响[J]. 粉末冶金技术, 2024, 42(2): 177-183. doi: 10.19591/j.cnki.cn11-1974/tf.2021120001
QIU Yue, HE Yihai, WANG Yifu, LIN Shaochuan, KONG Hui, WANG Rui. Influence of heat treatment on performance of Fe−6.5%Si magnetic powder core[J]. Powder Metallurgy Technology, 2024, 42(2): 177-183. doi: 10.19591/j.cnki.cn11-1974/tf.2021120001
Citation: QIU Yue, HE Yihai, WANG Yifu, LIN Shaochuan, KONG Hui, WANG Rui. Influence of heat treatment on performance of Fe−6.5%Si magnetic powder core[J]. Powder Metallurgy Technology, 2024, 42(2): 177-183. doi: 10.19591/j.cnki.cn11-1974/tf.2021120001

热处理对Fe−6.5%Si磁粉芯性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2021120001
基金项目: 国家自然科学基金资助项目(51904002);2020年安徽省特支计划(T000609)
详细信息
    通讯作者:

    E-mail: ahutwangrui@163.com

  • 中图分类号: TF124;TG271+.2

Influence of heat treatment on performance of Fe−6.5%Si magnetic powder core

More Information
  • 摘要: 对Fe−6.5%Si粉末(质量分数)进行不同温度的热处理实验,经压制后得到Fe−6.5%Si磁粉芯,并对磁粉芯进行不同温度的热处理,探究热处理工艺对Fe−6.5%Si磁粉芯磁导率和损耗等磁性能的影响。结果发现:粉末热处理可以大幅度消除气雾化制粉过程中合金粉末受高压气体冲击造成的缺陷,并减少粉末中的C、O含量;随着热处理温度的升高,粉末的矫顽力先增后减,饱和磁化强度逐渐降低。通过对压制成型磁粉芯进行热处理也能够改善磁粉芯的磁性能,不同温度热处理后损耗均维持在600~700 mW∙cm−3之间,最低值为625 mW∙cm−3。综合分析,用经900 ℃热处理粉末制成的磁粉芯在800 ℃进行后续热处理,磁粉芯磁导率、损耗等性能综合较优。
  • 图  1  不同温度热处理后的Fe−6.5%Si粉末X射线衍射图谱(a)及在~45°特征峰(b)

    Figure  1.  XRD patterns of the Fe−6.5%Si powders treated at different temperatures (a) and the characteristic peaks at ~45° (b)

    图  2  Fe−6.5%Si粉末表面形貌和C、O含量随热处理温度变化曲线:(a)热处理前;(b)热处理后;(c)含量-温度变化曲线

    Figure  2.  SEM images of the Fe−6.5%Si powders and the relationship between C and O content and heat treatment temperature: (a) before heat treatment; (b) after heat treatment; (c) curves of the C and O content and heat treatment temperature

    图  3  不同热处理温度Fe−6.5%Si粉末磁性能曲线:(a)磁化曲线;(b)矫顽力与饱和磁化强度

    Figure  3.  Magnetic curves of the Fe−6.5%Si powders treated at different temperatures: (a) magnetization curves; (b) coercivities and saturation magnetization

    图  4  Fe−6.5%Si磁粉芯磁导率与粉末热处理温度关系曲线

    Figure  4.  Relationship between the permeability of the magnetic powder cores and the heat treatment temperature of the Fe−6.5%Si powders

    图  5  Fe−6.5%Si磁粉芯总损耗(a)、磁滞损耗(b)、涡流损耗(c)以及与粉末热处理温度之间的关系(d)

    Figure  5.  Total loss (a), hysteresis loss (b), and eddy current loss (c) of the magnetic powder cores and the relationship between the loss and heat treatment temperature of the Fe−6.5%Si powders

    图  6  有机绝缘树脂热重−示差扫描量热曲线

    Figure  6.  TG−DSC curve of the organic insulating resin

    图  7  Fe−6.5%Si磁粉芯磁性能随热处理温度变化曲线:(a)磁导率;(b)总损耗;(c)磁滞损耗;(d)磁滞损耗在总损耗中的占比

    Figure  7.  Magnetic properties of the Fe−6.5%Si magnetic powder cores with the heat treatment temperature: (a) effective magnetic conductivity; (b) total loss; (c) hysteresis loss; (d) proportion of hysteresis loss in total loss

    表  1  Fe−6.5%Si粉末预处理实验条件

    Table  1.   Experimental conditions of the Fe−6.5%Si powder pretreatment

    编号热处理温度 / ℃质量 / g
    Fe−6.5%Si丙酮硅树脂
    15002020.2
    26002020.2
    37002020.2
    48002020.2
    59002020.2
    下载: 导出CSV

    表  2  粉末与磁粉芯热处理实验条件

    Table  2.   Heat treatment experimental conditions of the Fe−6.5%Si powders and magnetic power cores

    编号 粉末热处理
    温度 / ℃
    质量 / g 磁粉芯热处理
    温度 / ℃
    Fe−6.5%Si 硅树脂
    1 500 20 0.2 500
    2 500 20 0.2 650
    3 500 20 0.2 800
    4 900 20 0.2 500
    5 900 20 0.2 650
    6 900 20 0.2 800
    下载: 导出CSV
  • [1] Wang C, Guo Z L, Wang J, et al. Industry-oriented Fe-based amorphous soft magnetic composites with SiO2-coated layer by one-pot high-efficient synthesis method. Materials, 2020, 509: 166924
    [2] Wu X J, Chen C G, Hao J J, et al. Effect of phosphating and heat treatment on magnetic properties of Fe−3.3Si−6.5Cr soft magnetic composites. J Supercond Novel Magn, 2020, 33: 1889
    [3] Pan Y F, Peng J G, Qian L W, et al. Effects of compaction and heat treatment on the soft magnetic properties of iron-based soft magnetic composites. Mater Res Express, 2020, 7(1): 016115
    [4] Peng Y D, Nie J W, Zhang W J, et al. Preparation of soft magnetic composites for Fe particles coated with (NiZn)Fe2O4 via microwave treatment. J Magn Magn Mater, 2015, 395: 245
    [5] Kocsis B, Varga L K, Zsoldos I. Preparation of soft magnetic composite from Fe−6.9wt%Si by different heat treatment strategies. IOP Conf Ser Mater Sci Eng, 2020, 903: 012042
    [6] Wu Z Y, Jiang Z, Fan X A, et al. Facile synthesis of Fe−6.5wt%Si/SiO2 soft magnetic composites as an efficient soft magnetic composite material at medium and high frequencies. J Alloys Compd, 2018, 742: 90
    [7] Sun C Q. The Study on Preparation and Properies of Ti-Doped Tungsten Oxide Films by Co-sputtering [Dissertation]. Chongqing: Chongqing Normal University, 2009

    孙彩芹. Ti掺杂WO3薄膜的共溅射制备及性能研究[学位论文]. 重庆: 重庆师范大学, 2009
    [8] Zhang Z Y, Liu X S, Feng S J, et al. Fabrication of an Fe80.5Si7.5B6Nb5Cu amorphous-nanocrystalline powder core with outstanding soft magnetic properties. J Electron Mater, 2018, 47: 1819
    [9] Jia B, Li X B, Pan F S, et al. The effect of hot-pressing sintering temperature ongraphene reinforced alumina matrix composites. Mater Rep, 2020, 34(24): 24001 doi: 10.11896/cldb.19120144

    贾碧, 李晓博, 潘复生, 等. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响. 材料导报, 2020, 34(24): 24001 doi: 10.11896/cldb.19120144
    [10] Zhou B, Dong Y Q, Chi Q, et al. Fe-based amorphous soft magnetic composites with SiO2 insulation coatings: A study on coatings thickness, microstructure and magnetic properties. Ceram Int, 2020, 46(9): 13449
    [11] Slovenský P, Kollár P, Mei N, et al. Mechanical surface smoothing of micron-sized iron powder for improved silica coating performance as soft magnetic composites. Appl Surf Sci, 2020, 531: 147340
    [12] Li W C, Pu Y Y, Ying Y, et al. Magnetic properties and related mechanisms of iron-based soft magnetic composites with high thermal stability in situ composite-ferrite coating. J Alloys Compd, 2020, 829: 154533
    [13] Cheng N N, Wang Z, Liu T T. Improved magnetic softness for NiCuZn ferrite by two-step sintering method. IEEE Trans Magn, 2013, 49(7): 4188
    [14] Fatahi Y, Ghaempanah A, Ma'mani L, et al. Palladium supported aminobenzamide modified silica coated superparamagnetic iron oxide as an applicable nanocatalyst for Heck cross-coupling reaction. J Organomet Chem, 2021, 936: 121711
    [15] Zhang Y L, Fan X A, Hu W T, et al. Microstructure and magnetic properties of MnO2 coated iron soft magnetic composites prepared by ball milling. J Magn Magn Mater, 2020, 514: 167295
    [16] Lei R, Gao J H, Qi L F, et al. Construction of MnO2 nanosheets@graphenated carbon nanotube networks core-shell heterostructure on 316L stainless steel as binder-free supercapacitor electrodes. Int J Hydrogen Energy, 2020, 45(53): 28930
    [17] Wu Z Y, Xian C, Jia J X, et al. Silica coating of Fe−6.5wt%Si particles using fluidized bed CVD: Effect of precursor concentration on core–shell structure. J Phys Chem Solids, 2020, 146: 109626
    [18] Meng L B, Yu H C, Lü S Y, et al. Study on magnetic properties of FeSiCr soft magnetic powder prepared by water atomization. Powder Metall Technol, 2021, 39(4): 345

    孟令兵, 于海琛, 吕世雅, 等. 水雾化制备FeSiCr软磁粉末磁性能研究. 粉末冶金技术, 2021, 39(4): 345
    [19] Salmani M M, Hashemian M, Khandan A. Therapeutic effect of magnetic nanoparticles on calcium silicate bioceramic in alternating field for biomedical application. Ceram Int, 2020, 46(17): 27299
    [20] Wu Z Y, Gao Z H, Zhao Q, et al. Mechanism and effect of the dilution gas flow rate on various Fe–Si/SiO2 soft magnetic composites during fluidised bed chemical vapour deposition. Crystals, 2021, 11(8): 963
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  489
  • HTML全文浏览量:  57
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-16
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回