用于制备高性能钛基复合材料的碳包覆钛复合粉体研究进展

李少夫 杨亚锋

李少夫, 杨亚锋. 用于制备高性能钛基复合材料的碳包覆钛复合粉体研究进展[J]. 粉末冶金技术, 2022, 40(5): 421-430. doi: 10.19591/j.cnki.cn11-1974/tf.2022050017
引用本文: 李少夫, 杨亚锋. 用于制备高性能钛基复合材料的碳包覆钛复合粉体研究进展[J]. 粉末冶金技术, 2022, 40(5): 421-430. doi: 10.19591/j.cnki.cn11-1974/tf.2022050017
LI Shao-fu, YANG Ya-feng. Research progress on C-coated Ti composite powders used for preparing high-performance Ti matrix composites[J]. Powder Metallurgy Technology, 2022, 40(5): 421-430. doi: 10.19591/j.cnki.cn11-1974/tf.2022050017
Citation: LI Shao-fu, YANG Ya-feng. Research progress on C-coated Ti composite powders used for preparing high-performance Ti matrix composites[J]. Powder Metallurgy Technology, 2022, 40(5): 421-430. doi: 10.19591/j.cnki.cn11-1974/tf.2022050017

用于制备高性能钛基复合材料的碳包覆钛复合粉体研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2022050017
基金项目: 国家自然科学基金资助项目(52174349,52074254,51874271);山东省重点研发计划资助项目(2019JZZY010363);中国科学院粉体重点实验室课题(CXJJ-22S043);河南省“揭榜挂帅”科技项目(211110230200)
详细信息
    通讯作者:

    E-mail: yfyang@ipe.ac.cn

  • 中图分类号: TF125.2

Research progress on C-coated Ti composite powders used for preparing high-performance Ti matrix composites

More Information
  • 摘要: 钛基复合材料中增强相的形貌和分布是决定材料性能的关键,常规粉体机械混合后烧结引入增强相的方式存在形貌难调控、分布单一且均匀性差等问题,导致其强化效果不佳。针对该问题,本团队开发了一系列碳包覆钛复合粉体,通过设计包覆碳源的结构与组成调控粉体烧结过程中增强相的形成路径,不仅实现了增强相形貌调控和不同形貌的组合搭配,而且得到了晶内和晶界双增强相组织,大幅提升了钛基复合材料的力学性能。在此基础上,将碳包覆钛复合粉体拓展应用至钛基复合材料的3D打印领域,解决了高品质复合粉体缺乏并制约其发展的瓶颈问题。总结并评述了碳包覆钛复合粉体在制备钛基复合材料中取得的研究结果与工作进展,为增强相设计与调控提供新的研究思路及技术路线。
  • 图  1  不同类型碳包覆钛复合粉体的制备方法示意图

    Figure  1.  Schematic diagram of the fabrication process for the different C-coated Ti powders

    图  2  不同碳包覆钛粉体显微形貌[2932]:(a)A–C/TC4粉的表面微观形貌;(b)A–C/TC4粉的截面微观形貌;(c)CNTs/Ti粉的微观形貌;(d)CNTs的透射电镜图片;(e)H–C/TC4粉的微观形貌;(f)两种碳源的透射电镜图片

    Figure  2.  Morphologies of the different C-coated Ti powders[2932]: (a) SEM image of the A–C/TC4 powder surface; (b) sectional SEM image of the A–C/TC4 powder; (c) SEM image of CNTs/Ti powder; (d) TEM image of the extracted CNTs; (e) SEM image of H–C/TC4 powder; (f) TEM image of the extracted CNTs and A–C

    图  3  A‒C/TC4粉的热压烧结组织及增强相[29]:(a)和(b)A–C/TC4粉体的烧结组织和增强相分布的扫描电镜照片;(c)和(d)α-Ti晶内分布纳米片状增强相的形貌及物相分析;(e)和(f)β-Ti晶内分布颗粒增强相的形貌及物相分析

    Figure  3.  Sintered A–C/TC4 samples and the reinforcements[29]: (a) and (b) SEM images of the sintered A–C/TC4 samples and the reinforcement distribution; (c) and (d) the morphology and phase analysis of the nanoplatelets inside α-Ti grains; (e) and (f) the morphology and phase analysis of the nanoparticles inside β-Ti grains

    图  4  CNTs/Ti粉在不同温度的烧结组织和增强相形貌分布[31]:(a)和(b)900 ℃;(c)和(d)1000 ℃;(e)和(f)900 ℃烧结样品中保留的CNTs和形成的TiC颗粒

    Figure  4.  Microstructure of the CNTs/Ti powder samples sintered at different temperatures[31]: (a) and (b) 900 ℃; (c) and (d) 1000 ℃; (e) and (f) TEM images of the remained CNTs and the formed TiC nanoparticles in the CNTs/Ti powder samples sintered at 900 ℃

    图  5  不同烧结温度样品的X射线衍射图谱[31]

    Figure  5.  XRD spectra of the samples sintered at different temperatures[31]

    图  6  CNTs/TC4粉体的热压烧结组织

    Figure  6.  Microstructures of the samples fabricated from the CNTs/TC4 powders by hot press sintering

    图  7  H‒C/TC4粉体烧结组织及增强相[32]:(a)和(b)H–C/TC4粉体烧结组织及增强相分布;(c)~(e)晶界增强相的透射电子显微镜照片;(f)晶内增强相的透射电子显微镜照片

    Figure  7.  Sintered H–C/TC4 samples and the reinforcements[32]: (a) and (b) sintered H–C/TC4 sample microstructures and the reinforcement distribution; (c)~(e) TEM images of the interfacial reinforcements; (f) TEM images of the intragranular reinforcements

    图  8  不同形貌和分布组合增强相强化钛基复合材料[2932]:(a)与文献报道中钛基复合材料压缩屈服强度对比;(b)晶界增强相的强化机制;(c)晶内增强相的强化机制;(d)晶内/晶界双增强相组织的强化机制示意图

    Figure  8.  Reinforcements with the different morphologies and distribution combinations in TMCs[2932]: (a) comparison of the TMCs compressive yield strength reported in literatures; (b) strengthening mechanisms of the interfacial reinforcements; (c) strengthening mechanisms of the intragranular reinforcements; (d) strengthening mechanism of the interfacial/intragranular double reinforced phase

    图  9  CNTs/GA–TC4粉体的扫描电镜形貌(a)、原位合成CNTs扫描电镜形貌(b)、复合粉体打印样品宏观形貌(c)及打印样品的三维重构照片(d)[47]

    Figure  9.  SEM image of the CNTs/GA–TC4 powders (a), SEM image of the in situ synthesized CNTs (b), macro-profile of the samples printed by the CNTs/GA–TC4 powders (c), and 3D reconstructed images of the printed sample (d)[48]

    图  10  复合粉体打印组织和增强相显微形貌[47]:(a)复合粉体打印组织;(b)增强相;(c)和(d)增强相透射电子显微形貌

    Figure  10.  Microstructures of the printed samples using the CNTs/GA–TC4 powders and the reinforcements[48]: (a) SEM images of the printed samples; (b) SEM images of the reinforcements; (c) and (d) TEM images of the reinforcements

    图  11  打印样品拉伸应力应变曲线(a)及拉伸断口形貌(b)[47]

    Figure  11.  Tensile stress-strain curves (a) and SEM fractograph (b) of the printed samples using the pristine TC4 powders and the CNTs/GA-TC4 powders[47]

  • [1] Hayat M D, Singh H, He Z, et al. Titanium metal matrix composites: An overview. Composites Part A, 2019, 121: 418 doi: 10.1016/j.compositesa.2019.04.005
    [2] Huang L J, An Q, Geng L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites. Adv Mater, 2021, 33(6): 2000688 doi: 10.1002/adma.202000688
    [3] Jiao Y, Huang L J, Geng L. Progress on discontinuously reinforced titanium matrix composites. J Alloys Compd, 2018, 767: 1196 doi: 10.1016/j.jallcom.2018.07.100
    [4] Huang L J, Geng L, Peng H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Prog Mater Sci, 2015, 71: 93
    [5] Namini A S, Dilawary S A A, Motallebzadeh A, et al. Effect of TiB2 addition on the elevated temperature tribological behavior of spark plasma sintered Ti matrix composite. Composites Part B, 2019, 172: 271 doi: 10.1016/j.compositesb.2019.05.073
    [6] Liao Z R, Abdelhafeez A, Li H N, et al. State-of-the-art of surface integrity in machining of metal matrix composites. Int J Mach Tool Manuf, 2019, 143: 63 doi: 10.1016/j.ijmachtools.2019.05.006
    [7] Froes F H, Eylon D. Powder metallurgy of titanium alloys. Int Mater Rev, 1990, 35(1): 162 doi: 10.1179/095066090790323984
    [8] Ezugwu E O, Wang Z M. Titanium alloys and their machinability–a review. J Mater Process Technol, 1997, 68: 262 doi: 10.1016/S0924-0136(96)00030-1
    [9] Ma F C, Wang T R, Liu P, et al. Mechanical properties and strengthening effects of in situ (TiB+TiC)/Ti-1100 composite at elevated temperatures. Mater Sci Eng A, 2016, 654: 352 doi: 10.1016/j.msea.2015.12.071
    [10] Huang L J, Geng L. Titanium Matrix Composites with Network Microstructure. Beijing: National Defense Industry Press, 2015

    黄陆军, 耿林. 网状结构钛基复合材料. 北京: 国防工业出版社, 2015
    [11] Liu Q, Qi F G, Wang Q, et al. The influence of particles size and its distribution on the degree of stress concentration in particulate reinforced metal matrix composites. Mater Sci Eng A, 2018, 731: 351 doi: 10.1016/j.msea.2018.06.067
    [12] Yan Q, Chen B, Cao L, et al. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides. J Mater Sci Technol, 2022, 96: 85 doi: 10.1016/j.jmst.2021.03.073
    [13] Tang H P, Huang B Y, Liu Y, et al. Progress in powder metallurgy particle reinforced Ti matrix composite. Powder Metall Technol, 2004, 22(5): 293 doi: 10.3321/j.issn:1001-3784.2004.05.008

    汤慧萍, 黄伯云, 刘咏, 等. 粉末冶金颗粒增强钛基复合材料研究进展. 粉末冶金技术, 2004, 22(5): 293 doi: 10.3321/j.issn:1001-3784.2004.05.008
    [14] Yang Y C, Pan Y, Lu X, et al. Research progress on particle-reinforced titanium matrix composites prepared by powder metallurgy method. Powder Metall Technol, 2020, 38(2): 150 doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.011

    杨宇承, 潘宇, 路新, 等. 粉末冶金法制备颗粒增强钛基复合材料的研究进展. 粉末冶金技术, 2020, 38(2): 150 doi: 10.19591/j.cnki.cn11-1974/tf.2020.02.011
    [15] Saba F, Zhang F M, Liu S L, et al. Tribological properties, thermal conductivity and corrosion resistance of titanium/nanodiamond nanocomposites. Compos Commun, 2018, 10: 57 doi: 10.1016/j.coco.2018.06.008
    [16] Wang F C, Zhang Z H, Sun Y J, et al. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon, 2015, 95: 396 doi: 10.1016/j.carbon.2015.08.061
    [17] Lü S, Li J S, Li S F, et al. Effects of heat treatment on interfacial characteristics and mechanical properties of titanium matrix composites reinforced with discontinuous carbon fibers. J Alloys Compd, 2021, 877: 160313 doi: 10.1016/j.jallcom.2021.160313
    [18] Munir K S, Zheng Y F, Zhang D L, et al. Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater Sci Eng A, 2017, 696: 10 doi: 10.1016/j.msea.2017.04.026
    [19] Munir K S, Li Y C, Qian M, et al. Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites. Carbon, 2016, 99: 384 doi: 10.1016/j.carbon.2015.12.041
    [20] Munir K S, Li Y C, Li J X, et al. Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites. Materialia, 2018, 3: 122 doi: 10.1016/j.mtla.2018.08.015
    [21] Zhang X, Zhao N Q, He C N. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design–A review. Prog Mater Sci, 2020, 113: 100672 doi: 10.1016/j.pmatsci.2020.100672
    [22] Feng J, Jiang Z T, Han Q L. Research progress on discontinuous reinforced titanium matrix composites. Powder Metall Technol, 2020, 38(5): 392 doi: 10.19591/j.cnki.cn11-1974/tf.2019070001

    冯俊, 姜中涛, 韩骐璘. 不连续增强钛基复合材料的研究进展. 粉末冶金技术, 2020, 38(5): 392 doi: 10.19591/j.cnki.cn11-1974/tf.2019070001
    [23] Luo S D, Li Q, Tian J, et al. Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties. Scr Mater, 2013, 69: 29 doi: 10.1016/j.scriptamat.2013.03.017
    [24] Geng L, Ni D R, Zhang J, et al. Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites. J Alloys Compd, 2008, 463(1): 488
    [25] Huang L J, Geng L, Xu H Y, et al. In situ TiC particles reinforced Ti6Al4V matrix composite with a network reinforcement architecture. Mater Sci Eng A, 2011, 528: 2859 doi: 10.1016/j.msea.2010.12.046
    [26] Huang L J, Geng L, Peng H X, et al. High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture. Mater Sci Eng A, 2012, 534: 688 doi: 10.1016/j.msea.2011.12.028
    [27] Zadra M, Girardini L. High-performance, low-cost titanium metal matrix composites. Mater Sci Eng A, 2014, 608: 155 doi: 10.1016/j.msea.2014.04.066
    [28] Song J G, Ji G C, Li S B, et al. Review on coating technology of powder. Mater Rev, 2009, 23(Suppl 1): 164

    宋杰光, 纪岗昌, 李世斌, 等. 粉体包覆技术的研究进展. 材料导报, 2009, 23(增刊1): 164
    [29] Li S F, Tan C, Liu Y, et al. Designing core-shell C-coated Ti–6Al–4V powders for high-performance nano-sized TiC platelets/particles synergistically reinforced Ti–6Al–4V composites. Materialia, 2018, 2: 68 doi: 10.1016/j.mtla.2018.06.010
    [30] Li S F, Liu Y, Yang Y F. Activating trace Fe impurity as catalyst to plant carbon nanotubes within Ti–6Al–4V powders for high-performance Ti-matrix composites. Metall Mater Trans A, 2019, 50: 3975 doi: 10.1007/s11661-019-05321-x
    [31] Li S F, Cui J Y, Yang Y F, et al. In situ growth of carbon nanotubes on Ti powder for strengthening of Ti matrix composite via nanotube-particle dual morphology. Metall Mater Trans A, 2020, 51: 5932 doi: 10.1007/s11661-020-05988-7
    [32] Li S F, Yang Y F, Misra R D K, et al. Interfacial/intragranular reinforcement of titanium-matrix composites produced by a novel process involving core-shell structured powder. Carbon, 2020, 164: 378 doi: 10.1016/j.carbon.2020.04.010
    [33] Li S F, Geng K, Misra R D K, et al. Commercial scale uniform powder coating for metal additive manufacturing. JOM, 2020, 72: 4639 doi: 10.1007/s11837-020-04386-z
    [34] Vasanthakumar K, Karthiselva N S, Chawake N M, et al. Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures. J Alloys Compd, 2017, 709: 829 doi: 10.1016/j.jallcom.2017.03.216
    [35] Adegbenjoa A O, Olubambia P A, Potgieter J H, et al. Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V. Mater Des, 2017, 128: 119 doi: 10.1016/j.matdes.2017.05.003
    [36] Munir K S, Oldfield D T, Wen C. Role of process control agent in the synthesis of multi-walled carbon nanotubes reinforced titanium metal matrix powder mixtures. Adv Eng Mater, 2016, 18: 294 doi: 10.1002/adem.201500346
    [37] Lee H J, Kim S H, Lee J C. Promotion of C diffusion to prepare a high-strength wear-resistant Ti alloy. Scr Mater, 2016, 115: 33 doi: 10.1016/j.scriptamat.2015.12.024
    [38] Hao Y J, Liu J X, Li J H, et al. Rapid preparation of TiC reinforced Ti6Al4V based composites by carburizing method through spark plasma sintering technique. Mater Des, 2015, 65: 94 doi: 10.1016/j.matdes.2014.09.008
    [39] Zhang X J, Song F, Wei Z P, et al. Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction. Mater Sci Eng A, 2017, 705: 153 doi: 10.1016/j.msea.2017.08.079
    [40] Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature, 2019, 576: 91 doi: 10.1038/s41586-019-1783-1
    [41] Yu W H, Sing S L, Chua C K, et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review. Prog Mater Sci, 2019, 104: 330 doi: 10.1016/j.pmatsci.2019.04.006
    [42] Yan Q, Chen B, Li J S. Super-high-strength graphene/titanium composites fabricated by selective laser melting. Carbon, 2021, 174: 451 doi: 10.1016/j.carbon.2020.12.047
    [43] Zeng X, Yamaguchi T, Nishio K. Characteristics of Ti(C, N)/TiB composite layer on Ti–6Al–4V alloy produced by laser surface melting. Opt Laser Technol, 2016, 80: 84 doi: 10.1016/j.optlastec.2016.01.004
    [44] Gu D D, Hagedorn Y C, Meiners W, et al. Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance. Surf Coat Technol, 2011, 205: 3285 doi: 10.1016/j.surfcoat.2010.11.051
    [45] Gu D D, Meng G B, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement. Scr Mater, 2012, 67: 185 doi: 10.1016/j.scriptamat.2012.04.013
    [46] He B B, Chang K, Wu W H, et al. The formation mechanism of TiC reinforcement and improved tensile strength in additive manufactured Ti matrix nanocomposite. Vacuum, 2017, 143: 23 doi: 10.1016/j.vacuum.2017.05.029
    [47] Liu Y, Li S F, Misra R D K, et al. Planting carbon nanotubes within Ti–6Al–4V to make high-quality composite powders for 3D printing high-performance Ti–6Al–4V matrix composites. Scr Mater, 2020, 183: 6 doi: 10.1016/j.scriptamat.2020.03.009
    [48] Gu D D, Rao X W, Dai D H, et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: Processing optimization, microstructure evolution and mechanical properties. Addit Manuf, 2019, 29: 100801
    [49] Aboulkhair N T, Simonelli M, Salama E, et al. Evolution of carbon nanotubes and their metallurgical reactions in Al-based composites in response to laser irradiation during selective laser melting. Mater Sci Eng A, 2019, 765: 138307 doi: 10.1016/j.msea.2019.138307
    [50] Zhang B C, Bi G J, Chew Y X, et al. Comparison of carbon-based reinforcement on laser aided additive manufacturing Inconel 625 composites. Appl Surf Sci, 2019, 490: 522 doi: 10.1016/j.apsusc.2019.06.008
  • 加载中
图(11)
计量
  • 文章访问数:  4359
  • HTML全文浏览量:  135
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 刊出日期:  2022-10-30

目录

    /

    返回文章
    返回