高级检索

用于制备高性能钛基复合材料的碳包覆钛复合粉体研究进展

李少夫, 杨亚锋

李少夫, 杨亚锋. 用于制备高性能钛基复合材料的碳包覆钛复合粉体研究进展[J]. 粉末冶金技术, 2022, 40(5): 421-430. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050017
引用本文: 李少夫, 杨亚锋. 用于制备高性能钛基复合材料的碳包覆钛复合粉体研究进展[J]. 粉末冶金技术, 2022, 40(5): 421-430. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050017
LI Shao-fu, YANG Ya-feng. Research progress on C-coated Ti composite powders used for preparing high-performance Ti matrix composites[J]. Powder Metallurgy Technology, 2022, 40(5): 421-430. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050017
Citation: LI Shao-fu, YANG Ya-feng. Research progress on C-coated Ti composite powders used for preparing high-performance Ti matrix composites[J]. Powder Metallurgy Technology, 2022, 40(5): 421-430. DOI: 10.19591/j.cnki.cn11-1974/tf.2022050017

用于制备高性能钛基复合材料的碳包覆钛复合粉体研究进展

基金项目: 国家自然科学基金资助项目(52174349,52074254,51874271);山东省重点研发计划资助项目(2019JZZY010363);中国科学院粉体重点实验室课题(CXJJ-22S043);河南省“揭榜挂帅”科技项目(211110230200)
详细信息
    通讯作者:

    杨亚锋: E-mail: yfyang@ipe.ac.cn

  • 中图分类号: TF125.2

Research progress on C-coated Ti composite powders used for preparing high-performance Ti matrix composites

More Information
  • 摘要:

    钛基复合材料中增强相的形貌和分布是决定材料性能的关键,常规粉体机械混合后烧结引入增强相的方式存在形貌难调控、分布单一且均匀性差等问题,导致其强化效果不佳。针对该问题,本团队开发了一系列碳包覆钛复合粉体,通过设计包覆碳源的结构与组成调控粉体烧结过程中增强相的形成路径,不仅实现了增强相形貌调控和不同形貌的组合搭配,而且得到了晶内和晶界双增强相组织,大幅提升了钛基复合材料的力学性能。在此基础上,将碳包覆钛复合粉体拓展应用至钛基复合材料的3D打印领域,解决了高品质复合粉体缺乏并制约其发展的瓶颈问题。总结并评述了碳包覆钛复合粉体在制备钛基复合材料中取得的研究结果与工作进展,为增强相设计与调控提供新的研究思路及技术路线。

    Abstract:

    The morphology and distribution of reinforcements in the titanium matrix composites (TMCs) are crucial in determining the material performances. Due to the uncontrollable morphology and inhomogeneous distribution of the reinforcements in the current TMCs, a series of C-coated Ti composite powders were developed by fluidization technology. By designing the structure and composition of C-coatings, the different morphology combinations and the intragranular/interface reinforcements were both achieved, which significantly improved the mechanical properties of TMCs. Furthermore, the composite powders were also extended to the 3D printing of TMCs, which solved the bottleneck issue of lacking the high-quality composite powders. The research results and work progress of the C-coated Ti composite powders in the preparation of high-performance TMCs were summarized and reviewed, providing the new insight and technical route for the design and control of reinforcements in TMCs.

  • 钛基复合材料(titanium matrix composites,TMCs)是通过在钛合金中引入增强相形成的复合材料,可显著提升材料的强度和服役温度,在航空航天、武器装备等领域应用潜力巨大[15]。但是,钛基复合材料和钛合金一样,机械加工能力差,常规铸造后机加工的生产成本极高,且增强相的引入导致材料硬度升高、电导率下降,进一步增加了加工难度和生产成本[69]。粉末冶金技术通过将钛粉与增强相或反应原料混合,然后烧结成形,不但可提高原料利用率、降低成本,还具有组织性能易调控等优点,已成为钛基复合材料主流制备技术[1014]

    增强相的形貌种类和分布特征是决定其强化机制和增强效果的关键[12,10]。碳由于存在多种不同结构的同素异形体,被广泛用于构造不同形貌的增强相[1520]。Saba等[15]将纳米金刚石与钛粉混合,采用放电等离子体烧结技术(spark plasma sintering,SPS)得到了颗粒增强相,其通过钉扎作用提升基体强度。此外,金刚石颗粒在烧结后还能保持高导热特性,提升材料的热导率。Wang等[16]和Lü等[17]分别将碳纳米管(carbon nanotubes,CNTs)和碳纤维(carbon fibers,CFs)引入钛粉,烧结后碳纳米管和碳纤维在基体中部分保留,得到一维纳米线增强相,其主要通过转移载荷机制提升强度。相比颗粒增强相,一维纳米线造成的界面应力集中程度更低,因此对材料的塑性影响也更小。墨尔本皇家理工大学Wen团队[1820]对CNTs/TMCs开展了更深入研究,发现CNTs通过界面反应可以得到TiC颗粒,与保留的CNTs可实现两种强化机制的耦合,进一步提升钛基复合材料的强度。然而,机械混合引入的CNTs因强范德华力而缠绕团聚,转移载荷作用衰退[21];同时,混合后CNTs的结构受到破坏,导致Ti–C界面反应剧烈,保留的CNTs与形成的TiC比例难以调控,性能进一步提升受限。如何引入不同形貌的增强相并实现多尺度复合强化是提升增强相强化效果和钛基复合材料力学性能的关键[22]

    钛基复合材料中增强相的空间分布主要包括沿晶界分布和晶内弥散分布两种形式。其中,晶界分布增强相可在粉体烧结时通过原位滞留或界面反应形成[18],晶内增强相需要通过溶解析出得到[23]。Geng团队[2426]开发了一系列网状结构的晶界TiCp和TiBw增强钛基复合材料,通过优化增强相添加量和均匀性将钛基体的屈服强度提升了30%,服役温度提升了近100 ℃。然而,单一分布特点导致晶粒内部的位错、层错等缺陷组织缺乏强化,虽然可通过提高晶界增强相的体积分数继续提升强度,但造成了材料塑性的严重衰退。要想诱发溶解析出机制获得晶内增强相,其关键条件是碳源能够快速溶解进入钛基体内部,这对引入碳源的尺寸和活性要求极高。石墨颗粒尺寸较大、活性差,难以实现快速溶解。炭黑的细小尺寸能够满足快速溶解的动力学要求,但当前主要通过机械球磨法引入,细小的炭黑颗粒在球磨过程中容易发生团聚,导致高活性丧失,难以诱发溶解析出机制。Zadra和Girardini[27]研究证实,通过机械混合在钛粉中引入炭黑颗粒,炭黑颗粒大部分在烧结后形成了沿晶界分布的粗大TiC颗粒。针对上述问题,Luo等[23]通过化学沉淀法将高溶解特性的纳米碳聚合物包覆在钛粉表面,粉体在烧结过程中,纳米碳聚合物全部溶解在钛基体中并诱发TiC析出,得到了晶内均匀分布增强相,材料的屈服强度得到大幅提升。上述研究结果表明,通过构建碳包覆钛粉,不但能够保留碳源与钛的本征反应特性,其在粉体表面的均匀分布特点也有利于烧结后增强相在基体中的均匀分布,提升强化效率。然而,受限于纳米碳颗粒的高扩散速率以及TiC与α-Ti特殊的晶体学取向关系,仅能在晶内获得特定取向的片状增强相,增强相形貌难调控、分布单一等问题仍然存在。此外,化学沉淀法在钛粉表面包覆纳米碳聚合物时,还引入了大量的夹杂和污染物,损害了钛合金基体的性能。

    鉴于碳包覆钛复合粉体在碳源保持其本征反应特性以及形成增强相分布均匀性等方面的优势,本团队开发了一系列具有“核壳结构”的碳包覆钛复合粉体,通过包覆碳源结构与组成设计,调控粉体烧结过程中增强相的形成路径,实现对增强相形貌和分布的有效调控。上述包覆粉体主要通过流化床化学气相沉积(fluidized bed chemical vapor deposition,FBCVD)技术实现,相比机械混合[27]、固定床化学气相沉积[28]和共沉淀[23]等粉体复合技术,本文报道的包覆碳源在粉体表面分布更加均匀,碳源结构也不易被破坏,同时可以避免大量O、N等有害杂质引入。针对CNTs团聚和界面反应调控难题,原位合成了高品性CNTs包覆钛粉(CNTs/Ti粉),通过烧结温度和时间调控晶界增强相的形貌和组成。针对增强相分布单一及形貌调控难题,团队开发了无定形碳(amorphous carbon,A–C)包覆钛粉(A–C/TC4粉)和异构碳源(heterogeneous carbon,H–C)包覆钛粉(H–C/TC4粉),通过烧结策略和工艺设计,合成了两种形貌的晶内增强相,以及晶内和晶界双增强相组织。同时,本团队还将碳包覆钛复合粉体拓展应用至钛基复合材料3D打印领域,解决了高品质复合粉体缺乏并制约其发展的瓶颈问题。

    图1为不同类型碳包覆钛粉的制备方法示意图。钛粉选用陕西有色金属控股集团提供的氢化脱氢(hydrogenation dehydrogenation,HDH)钛粉或Ti–6Al–4V(TC4)钛合金粉,粒径范围50~150 μm。A–C/TC4粉采用流化床化学气相沉积技术制备,粉体无需预处理。CNTs/Ti粉首先采用化学镀在钛粉表面引入纳米镍作为催化剂,然后通过流化床化学气相沉积技术原位合成CNTs,CNTs的品性和包覆量通过沉积温度、碳源浓度、流化气速等参数调控。H–C/TC4粉通过Kroll试剂进行表面侵蚀处理,去掉粉体表面氧化层并暴露β-Ti,利用内部Fe杂质的催化作用合成CNTs,并在贫Fe的α-Ti上沉积A–C,进而得到H–C/TC4粉。详细方法和实验参数见文献[2933]。

    图  1  不同类型碳包覆钛复合粉体的制备方法示意图
    Figure  1.  Schematic diagram of the fabrication process for the different C-coated Ti powders

    A–C/TC4粉用于获得两种不同形貌的晶内增强相,需碳源充分扩散进入钛基体,通过溶解析出得到TiC增强相,因此采用真空热压烧结。CNTs/Ti粉和H–C/TC4粉分别用于调控晶界增强相形貌和增强相分布,为避免CNTs全部发生界面反应而采用放电等离子快速烧结。详细烧结工艺和实验参数见文献[2933]。

    粉体中碳含量通过LECO CS-844碳硫分析仪测试。包覆碳源的物相通过X射线衍射仪(X-ray diffraction,XRD)和拉曼光谱(Raman spectrometer)表征。粉体形貌和烧结组织通过扫描电子显微镜(scanning electron microscopy,SEM)和透射电子显微镜(transmission electron microscopy,TEM)分析。增强相的物相结构与组成通过X射线衍射仪、能谱仪(energy disperse spectroscope,EDS)和选区电子衍射(selected area electron diffraction,SAED)分析。烧结后复合材料的力学性能通过Instron实验机测试。相关仪器型号、参数条件以及其他测试见文献[2933]。

    图2为不同类型碳包覆钛粉显微形貌。如图2(a)和图2(b)所示,絮状A–C颗粒均匀包覆在粉体表面,厚度约为130 nm。图2(c)为CNTs/Ti粉显微形貌,原位生长的CNTs分布均匀,其品性可通过流化床化学气相沉积参数调控,在优化参数下(沉积温度550 ℃,C2H2体积分数5%,沉积时间15 min),CNTs/Ti粉体拉曼光谱的D峰和G峰强度比值(ID/IG)约为0.44,远低于机械混合引入的CNTs[1819,3436],说明原位合成CNTs的结构完整性和品性更高。通过透射电子显微镜观察可以看到,从粉体上超声剥离的CNTs具有典型的中空结构和高长径比,每根CNTs顶端都包裹着Ni纳米颗粒,证实了原位生长机制,见图2(d)。H–C/TC4粉的形貌如图2(e)所示,CNTs和A–C两种碳源均匀分布在粉体表面,这主要是由TC4粉体内部α和β两相均匀分布特性决定的。图2(f)为两种碳源的透射电子显微镜照片,CNTs顶端包裹着Fe颗粒,印证了β-Ti内部Fe杂质对CNTs的催化作用[32];A–C呈现纳米薄片状,这是由于碳源热解后在α-Ti上均匀沉积形成的[32]。两种碳源的均匀引入,有望在粉体烧结时同时诱发界面反应和溶解析出两种TiC形成机制,用于调控增强相的形貌和分布。

    图  2  不同碳包覆钛粉体显微形貌[2932]:(a)A–C/TC4粉的表面微观形貌;(b)A–C/TC4粉的截面微观形貌;(c)CNTs/Ti粉的微观形貌;(d)CNTs的透射电镜图片;(e)H–C/TC4粉的微观形貌;(f)两种碳源的透射电镜图片
    Figure  2.  Morphologies of the different C-coated Ti powders[2932]: (a) SEM image of the A–C/TC4 powder surface; (b) sectional SEM image of the A–C/TC4 powder; (c) SEM image of CNTs/Ti powder; (d) TEM image of the extracted CNTs; (e) SEM image of H–C/TC4 powder; (f) TEM image of the extracted CNTs and A–C

    图3(a)为A–C/TC4粉的热压烧结组织,材料内部未发现明显气孔,说明已实现高致密化烧结。图3(b)~图3(d)展示了增强相的形貌及分布特征,大量纳米片状增强相(六方结构Ti8C5)在α-Ti晶粒内部定向排布,其原因是析出的TiC与α-Ti存在特定的晶体学取向关系;纳米颗粒增强相(立方结构TiC)在β-Ti晶粒内部弥散分布,粒径范围在10~60 nm,通过钉扎位错对β-Ti进行强化。上述结果说明,烧结A–C/TC4粉时利用C在α-Ti和β-Ti中析出路径差异,能够得到两种不同形貌的晶内增强相[29]

    图  3  A‒C/TC4粉的热压烧结组织及增强相[29]:(a)和(b)A–C/TC4粉体的烧结组织和增强相分布的扫描电镜照片;(c)和(d)α-Ti晶内分布纳米片状增强相的形貌及物相分析;(e)和(f)β-Ti晶内分布颗粒增强相的形貌及物相分析
    Figure  3.  Sintered A–C/TC4 samples and the reinforcements[29]: (a) and (b) SEM images of the sintered A–C/TC4 samples and the reinforcement distribution; (c) and (d) the morphology and phase analysis of the nanoplatelets inside α-Ti grains; (e) and (f) the morphology and phase analysis of the nanoparticles inside β-Ti grains

    图4为CNTs/Ti粉在不同放电等离子烧结温度条件下的组织形貌。经900 ℃烧结5 min后,大部分CNTs仍在晶界保留,说明原位合成的CNTs比机械混合引入的CNTs反应惰性更高,其原因是原位合成不会损害结构完整性并保留其化学稳定性。同时,CNTs在烧结后分散性良好,继承了CNTs在包覆粉体中的均匀分布特性,有利于发挥其转移载荷作用。将烧结温度提升至1000 ℃,TiC颗粒的数量明显增多,但仍有部分保留在晶界,说明增强相组成可通过烧结温度调控。通过碳薄膜复型将CNTs/Ti粉烧结样品中的增强相萃取到铜网上,采用透射电子显微镜分析形貌和结构,结果见图4(e)和图4(f)。在900 ℃烧结条件下,CNTs在组织中大量滞留并保留中空结构,部分CNTs与钛反应形成TiC颗粒,尺寸不超过100 nm。

    图  4  CNTs/Ti粉在不同温度的烧结组织和增强相形貌分布[31]:(a)和(b)900 ℃;(c)和(d)1000 ℃;(e)和(f)900 ℃烧结样品中保留的CNTs和形成的TiC颗粒
    Figure  4.  Microstructure of the CNTs/Ti powder samples sintered at different temperatures[31]: (a) and (b) 900 ℃; (c) and (d) 1000 ℃; (e) and (f) TEM images of the remained CNTs and the formed TiC nanoparticles in the CNTs/Ti powder samples sintered at 900 ℃

    采用X射线衍射仪半定量分析CNTs向TiC的转化率,结果如图5所示。在800 ℃快速烧结条件下,原位合成的CNTs因具有高稳定性而几乎不与钛发生反应,绝大多数可以保留;将烧结温度提升至900 ℃,CNTs/TiC的转化率约为11.6%,对应的保留CNTs和形成TiC的质量比约为1.5∶1.0;继续提升烧结温度至1000 ℃,约为47%的CNTs转化为TiC,对应的CNTs和TiC的质量比约为1.0∶4.5。CNTs/TiC的转化率(晶界增强相组成)可通过烧结温度调控,进而实现两种形貌增强相的强化机制互补。改变烧结策略和工艺参数还可实现CNTs向TiC颗粒的完全转化,图6为CNTs/Ti粉体在1000 ℃热压烧结2 h的组织照片,所有CNTs都转变成为TiC颗粒,进一步证实采用CNTs/Ti粉可调控晶界增强相的形貌及物相组成。

    图  5  不同烧结温度样品的X射线衍射图谱[31]
    Figure  5.  XRD spectra of the samples sintered at different temperatures[31]
    图  6  CNTs/TC4粉体的热压烧结组织
    Figure  6.  Microstructures of the samples fabricated from the CNTs/TC4 powders by hot press sintering

    图7为H–C/TC4粉体的放电等离子烧结组织及增强相形貌与分布,可同时观察到三种增强相,分别是沿晶界均匀分布的CNTs和TiC颗粒,以及晶内析出的TiC纳米片。根据前文对CNTs/Ti和A–C/TC4两种粉体的烧结组织分析,推断出CNTs在烧结时部分保留,其余与钛发生反应形成了晶界TiC颗粒;而A–C通过溶解析出在α-Ti晶粒内部得到定向分布的TiC纳米片[32]

    图  7  H‒C/TC4粉体烧结组织及增强相[32]:(a)和(b)H–C/TC4粉体烧结组织及增强相分布;(c)~(e)晶界增强相的透射电子显微镜照片;(f)晶内增强相的透射电子显微镜照片
    Figure  7.  Sintered H–C/TC4 samples and the reinforcements[32]: (a) and (b) sintered H–C/TC4 sample microstructures and the reinforcement distribution; (c)~(e) TEM images of the interfacial reinforcements; (f) TEM images of the intragranular reinforcements

    图8为不同形貌和分布组合增强相对基体的强化效果,以及与其他文献报道钛基复合材料的强度对比。研究发现晶内和晶界均被强化时性能更优异[2932],与文献报道的钛基复合材料相比强度得到明显提升。通过对增强相分布特征及断口形貌分析,总结了不同形貌和分布增强相的强化机制。如图8(b)~图8(d)所示,沿晶界分布的CNTs通过转移载荷强化基体,而晶界TiC颗粒通过钉扎晶界进行强化,其钉扎作用还能阻碍粉体烧结过程中的晶粒长大,通过细晶强化进一步提升强度。晶内析出的TiC纳米片在材料受力变形过程中,可沿着排布方向消散并削弱应力,并且通过桥梁支撑强化基体;晶内弥散分布的TiC颗粒可通过钉扎位错提升屈服强度和模量。对于晶内/晶界双增强相强化钛基复合材料,未发现不同类型增强相共存时因强化机制不同出现抵消作用,但由于增强相的组合存在多样性,且不同搭配下复合强化机制也存在高复杂性,未来需要继续深入研究不同搭配组合增强相的强化机制之间的耦合关系,并以此为基础,通过包覆碳源设计对增强相的形貌、分布、组成搭配进行更精准调控,进一步提升钛基复合材料性能。

    图  8  不同形貌和分布组合增强相强化钛基复合材料[2932]:(a)与文献报道中钛基复合材料压缩屈服强度对比;(b)晶界增强相的强化机制;(c)晶内增强相的强化机制;(d)晶内/晶界双增强相组织的强化机制示意图
    Figure  8.  Reinforcements with the different morphologies and distribution combinations in TMCs[2932]: (a) comparison of the TMCs compressive yield strength reported in literatures; (b) strengthening mechanisms of the interfacial reinforcements; (c) strengthening mechanisms of the intragranular reinforcements; (d) strengthening mechanism of the interfacial/intragranular double reinforced phase

    3D打印通过高能激光或电子束熔化粉体颗粒/快速凝固逐层堆积成形,可实现高致密、复杂结构件的近净成形制造,从根本上解决钛基复合材料生产成本高和几何形状受限等问题[4042]。然而,目前钛基复合材料的3D打印技术发展非常缓慢,主要原因是可用于3D打印的高质量复合粉体缺乏。传统复合材料粉体的制备方法包括雾化法和球磨法[4345]。前者由于增强相与钛熔体之间密度差异大、润湿性差而难以复合化;后者通过球磨辅助引入增强相的方法也难以同时实现粉体的高度均匀化和复合化,并且机械外力还将破坏粉体的球形度和流动性,降低可打印性能,导致材料成形后存在大量孔隙缺陷,性能不佳[46]

    针对上述问题,将碳包覆钛复合粉体拓展应用至钛基复合材料的3D打印领域,通过化学侵蚀暴露气雾化(gas atomization,GA)球形TC4粉体内部Fe杂质催化剂,利用流化床化学气相沉积原位合成CNTs,在不改变球形度和流动性的基础上,制备了一种高品性CNTs包覆GA–TC4复合粉体(CNTs/GA–TC4粉)[48]。如图9(a)所示,包覆后的CNTs/GA–TC4粉体维持着初始球形轮廓,根据霍尔流速计和扫描电镜表征结果,初始粉体的流动性和球形度为26.2 (s/50 g)和0.916,而包覆后粉体为26.5 (s/50 g)和0.902,两个指标未发生明显变化,说明原位合成的CNTs不会严重破坏粉体的可打印性能。通过高放大倍数扫描电镜观察(图9(a)中插图),发现粉体表面出现了蚀刻沟槽,这是由于TC4粉体内部存在α和β两相。进一步观察发现沟槽内部均匀地分布着大量CNTs,粉体拉曼光谱的ID/IG值约为0.824,低于机械混合引入的CNTs[1819,4850],说明包覆粉体中CNTs具有结构完整性高和品性好优点。通过选区激光熔化技术(selective laser melting,SLM)打印CNTs/GA–TC4粉体,如图9(c)所示,打印样品表面光亮、尺寸精度高,通过计算机断层扫描(computed tomography,CT)对样品内部进行三维重构(图9(d)),未观察到大尺寸孔隙等缺陷,样品相对密度超过99%。

    图  9  CNTs/GA–TC4粉体的扫描电镜形貌(a)、原位合成CNTs扫描电镜形貌(b)、复合粉体打印样品宏观形貌(c)及打印样品的三维重构照片(d)[47]
    Figure  9.  SEM image of the CNTs/GA–TC4 powders (a), SEM image of the in situ synthesized CNTs (b), macro-profile of the samples printed by the CNTs/GA–TC4 powders (c), and 3D reconstructed images of the printed sample (d)[48]

    图10(a)为复合粉体的打印组织形貌,与传统GA–TC4粉体打印组织相似,发现了大量的针状马氏体组织存在,但尺寸更加细小。图10(b)为更高放大倍数的扫描电镜照片,可以观察到不同形貌的增强相均匀分布在钛基体中,CNTs在打印后大量保留,同时发现了TiC纳米颗粒(图10(b))和纳米片(图10(c))。纳米颗粒是由CNTs与钛发生界面反应得到,而纳米片通过溶解析出形成。图11为包覆粉体打印样品的拉伸曲线和断口形貌。与未改性TC4合金的打印样品相比,添加质量分数约为0.3%的CNTs可将TC4基体的屈服强度提升大约200 MPa,同时保持一定的断后伸长率(约为3.2%)。拉伸断口内部观察到CNTs的拔出现象,证实了其转移载荷强化机制。同时,由CNTs转化形成的TiC纳米颗粒可以通过钉扎位错和晶界,同时配合TiC纳米片层的桥梁支撑作用,共同提升了钛基体的屈服强度。

    图  10  复合粉体打印组织和增强相显微形貌[47]:(a)复合粉体打印组织;(b)增强相;(c)和(d)增强相透射电子显微形貌
    Figure  10.  Microstructures of the printed samples using the CNTs/GA–TC4 powders and the reinforcements[48]: (a) SEM images of the printed samples; (b) SEM images of the reinforcements; (c) and (d) TEM images of the reinforcements
    图  11  打印样品拉伸应力应变曲线(a)及拉伸断口形貌(b)[47]
    Figure  11.  Tensile stress-strain curves (a) and SEM fractograph (b) of the printed samples using the pristine TC4 powders and the CNTs/GA-TC4 powders[47]

    总结了碳包覆钛复合粉体在制备钛基复合材料中取得的进展。通过包覆碳源结构和组成设计可实现对增强相形貌和分布的有效调控,实现了晶内和晶界双增强相组织,显著提升了钛基复合材料的力学性能。将碳包覆钛复合粉体拓展应用至钛基复合材料3D打印领域,解决了高品质复合粉体缺乏而制约其发展的瓶颈问题。

    (1)通过化学镀结合流化床化学气相沉积制备了CNTs/Ti包覆粉体,原位合成的CNTs比机械混合分散均匀性和反应惰性更高。通过烧结温度和时间可调控晶界CNTs和TiC颗粒比例,同时获得两种形貌的增强相;通过流化床化学气相沉积得到了A–C/TC4粉,粉体烧结时A–C溶解析出在α-Ti和β-Ti晶粒内部分别形成了TiC纳米片和纳米颗粒,两种形貌的晶内增强相的共同作用大幅提升了材料的强度。

    (2)通过粉体侵蚀结合流化床化学气相沉积制备了H–C/TC4粉体,CNTs由β-Ti内部Fe杂质催化形成,而A–C在α-Ti上均匀沉积。两种碳源在烧结过程中可保持其本征反应特性,烧结后同时得到晶内和晶界增强相,仅引入质量分数约为0.3%的异构碳源(H–C),可将TC4合金的屈服强度提升近一倍。CNTs和TiC纳米颗粒沿晶界分布,分别通过转移载荷和钉扎晶界强化钛基体;TiC纳米片在晶内发挥消散应力和桥梁支撑作用。不同增强相之间未出现明显排斥现象,多形貌组合、晶内/晶界同时分布的增强相展现出比单一形貌和分布特征的增强相更高的强化效率,对材料综合力学性能的提升效果也更加显著。

    (3)通过体侵蚀结合流化床化学气相沉积制备得到了高品性CNTs/GA–TC4粉体。包覆粉体仍保持着高流动性和球形度,展现了优异的可打印性能。粉体打印后的复合材料表面质量好、成形精度高,大部分CNTs在钛基体中保留,其余转化形成TiC纳米增强相。保留的CNTs与形成的TiC纳米增强相的共同作用,将TC4基体的屈服强度提升大约200 MPa,同时保持一定的断后伸长率。

    (4)使用碳包覆钛复合粉体能够实现对钛基复合材料中增强相形貌和分布的有效调控,但增强相形貌和分布组合存在多样性,不同搭配下的强化机制耦合原理尚未探明,如何深化设计并调控增强相缺乏理论指导。未来需继续探究基于碳包覆钛粉烧结形成增强相的调控机制,揭示不同增强相强化机制之间的耦合关系及作用机理,合理设计增强相的形貌、分布及组成,以期进一步提升钛基复合材料的综合力学性能并拓展其应用范畴。此外,包覆粉体的应用不仅局限于粉末冶金钛基复合材料领域,可利用包覆粉体在物相结构、组分含量、形貌分布的定量化设计与调控方面的优势,拓展其应用于增材制造、硬质合金、涂层防护等领域。

  • 图  1   不同类型碳包覆钛复合粉体的制备方法示意图

    Figure  1.   Schematic diagram of the fabrication process for the different C-coated Ti powders

    图  2   不同碳包覆钛粉体显微形貌[2932]:(a)A–C/TC4粉的表面微观形貌;(b)A–C/TC4粉的截面微观形貌;(c)CNTs/Ti粉的微观形貌;(d)CNTs的透射电镜图片;(e)H–C/TC4粉的微观形貌;(f)两种碳源的透射电镜图片

    Figure  2.   Morphologies of the different C-coated Ti powders[2932]: (a) SEM image of the A–C/TC4 powder surface; (b) sectional SEM image of the A–C/TC4 powder; (c) SEM image of CNTs/Ti powder; (d) TEM image of the extracted CNTs; (e) SEM image of H–C/TC4 powder; (f) TEM image of the extracted CNTs and A–C

    图  3   A‒C/TC4粉的热压烧结组织及增强相[29]:(a)和(b)A–C/TC4粉体的烧结组织和增强相分布的扫描电镜照片;(c)和(d)α-Ti晶内分布纳米片状增强相的形貌及物相分析;(e)和(f)β-Ti晶内分布颗粒增强相的形貌及物相分析

    Figure  3.   Sintered A–C/TC4 samples and the reinforcements[29]: (a) and (b) SEM images of the sintered A–C/TC4 samples and the reinforcement distribution; (c) and (d) the morphology and phase analysis of the nanoplatelets inside α-Ti grains; (e) and (f) the morphology and phase analysis of the nanoparticles inside β-Ti grains

    图  4   CNTs/Ti粉在不同温度的烧结组织和增强相形貌分布[31]:(a)和(b)900 ℃;(c)和(d)1000 ℃;(e)和(f)900 ℃烧结样品中保留的CNTs和形成的TiC颗粒

    Figure  4.   Microstructure of the CNTs/Ti powder samples sintered at different temperatures[31]: (a) and (b) 900 ℃; (c) and (d) 1000 ℃; (e) and (f) TEM images of the remained CNTs and the formed TiC nanoparticles in the CNTs/Ti powder samples sintered at 900 ℃

    图  5   不同烧结温度样品的X射线衍射图谱[31]

    Figure  5.   XRD spectra of the samples sintered at different temperatures[31]

    图  6   CNTs/TC4粉体的热压烧结组织

    Figure  6.   Microstructures of the samples fabricated from the CNTs/TC4 powders by hot press sintering

    图  7   H‒C/TC4粉体烧结组织及增强相[32]:(a)和(b)H–C/TC4粉体烧结组织及增强相分布;(c)~(e)晶界增强相的透射电子显微镜照片;(f)晶内增强相的透射电子显微镜照片

    Figure  7.   Sintered H–C/TC4 samples and the reinforcements[32]: (a) and (b) sintered H–C/TC4 sample microstructures and the reinforcement distribution; (c)~(e) TEM images of the interfacial reinforcements; (f) TEM images of the intragranular reinforcements

    图  8   不同形貌和分布组合增强相强化钛基复合材料[2932]:(a)与文献报道中钛基复合材料压缩屈服强度对比;(b)晶界增强相的强化机制;(c)晶内增强相的强化机制;(d)晶内/晶界双增强相组织的强化机制示意图

    Figure  8.   Reinforcements with the different morphologies and distribution combinations in TMCs[2932]: (a) comparison of the TMCs compressive yield strength reported in literatures; (b) strengthening mechanisms of the interfacial reinforcements; (c) strengthening mechanisms of the intragranular reinforcements; (d) strengthening mechanism of the interfacial/intragranular double reinforced phase

    图  9   CNTs/GA–TC4粉体的扫描电镜形貌(a)、原位合成CNTs扫描电镜形貌(b)、复合粉体打印样品宏观形貌(c)及打印样品的三维重构照片(d)[47]

    Figure  9.   SEM image of the CNTs/GA–TC4 powders (a), SEM image of the in situ synthesized CNTs (b), macro-profile of the samples printed by the CNTs/GA–TC4 powders (c), and 3D reconstructed images of the printed sample (d)[48]

    图  10   复合粉体打印组织和增强相显微形貌[47]:(a)复合粉体打印组织;(b)增强相;(c)和(d)增强相透射电子显微形貌

    Figure  10.   Microstructures of the printed samples using the CNTs/GA–TC4 powders and the reinforcements[48]: (a) SEM images of the printed samples; (b) SEM images of the reinforcements; (c) and (d) TEM images of the reinforcements

    图  11   打印样品拉伸应力应变曲线(a)及拉伸断口形貌(b)[47]

    Figure  11.   Tensile stress-strain curves (a) and SEM fractograph (b) of the printed samples using the pristine TC4 powders and the CNTs/GA-TC4 powders[47]

  • [1]

    Hayat M D, Singh H, He Z, et al. Titanium metal matrix composites: An overview. Composites Part A, 2019, 121: 418 DOI: 10.1016/j.compositesa.2019.04.005

    [2]

    Huang L J, An Q, Geng L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites. Adv Mater, 2021, 33(6): 2000688 DOI: 10.1002/adma.202000688

    [3]

    Jiao Y, Huang L J, Geng L. Progress on discontinuously reinforced titanium matrix composites. J Alloys Compd, 2018, 767: 1196 DOI: 10.1016/j.jallcom.2018.07.100

    [4]

    Huang L J, Geng L, Peng H X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Prog Mater Sci, 2015, 71: 93

    [5]

    Namini A S, Dilawary S A A, Motallebzadeh A, et al. Effect of TiB2 addition on the elevated temperature tribological behavior of spark plasma sintered Ti matrix composite. Composites Part B, 2019, 172: 271 DOI: 10.1016/j.compositesb.2019.05.073

    [6]

    Liao Z R, Abdelhafeez A, Li H N, et al. State-of-the-art of surface integrity in machining of metal matrix composites. Int J Mach Tool Manuf, 2019, 143: 63 DOI: 10.1016/j.ijmachtools.2019.05.006

    [7]

    Froes F H, Eylon D. Powder metallurgy of titanium alloys. Int Mater Rev, 1990, 35(1): 162 DOI: 10.1179/095066090790323984

    [8]

    Ezugwu E O, Wang Z M. Titanium alloys and their machinability–a review. J Mater Process Technol, 1997, 68: 262 DOI: 10.1016/S0924-0136(96)00030-1

    [9]

    Ma F C, Wang T R, Liu P, et al. Mechanical properties and strengthening effects of in situ (TiB+TiC)/Ti-1100 composite at elevated temperatures. Mater Sci Eng A, 2016, 654: 352 DOI: 10.1016/j.msea.2015.12.071

    [10] 黄陆军, 耿林. 网状结构钛基复合材料. 北京: 国防工业出版社, 2015

    Huang L J, Geng L. Titanium Matrix Composites with Network Microstructure. Beijing: National Defense Industry Press, 2015

    [11]

    Liu Q, Qi F G, Wang Q, et al. The influence of particles size and its distribution on the degree of stress concentration in particulate reinforced metal matrix composites. Mater Sci Eng A, 2018, 731: 351 DOI: 10.1016/j.msea.2018.06.067

    [12]

    Yan Q, Chen B, Cao L, et al. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides. J Mater Sci Technol, 2022, 96: 85 DOI: 10.1016/j.jmst.2021.03.073

    [13] 汤慧萍, 黄伯云, 刘咏, 等. 粉末冶金颗粒增强钛基复合材料研究进展. 粉末冶金技术, 2004, 22(5): 293 DOI: 10.3321/j.issn:1001-3784.2004.05.008

    Tang H P, Huang B Y, Liu Y, et al. Progress in powder metallurgy particle reinforced Ti matrix composite. Powder Metall Technol, 2004, 22(5): 293 DOI: 10.3321/j.issn:1001-3784.2004.05.008

    [14] 杨宇承, 潘宇, 路新, 等. 粉末冶金法制备颗粒增强钛基复合材料的研究进展. 粉末冶金技术, 2020, 38(2): 150 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.011

    Yang Y C, Pan Y, Lu X, et al. Research progress on particle-reinforced titanium matrix composites prepared by powder metallurgy method. Powder Metall Technol, 2020, 38(2): 150 DOI: 10.19591/j.cnki.cn11-1974/tf.2020.02.011

    [15]

    Saba F, Zhang F M, Liu S L, et al. Tribological properties, thermal conductivity and corrosion resistance of titanium/nanodiamond nanocomposites. Compos Commun, 2018, 10: 57 DOI: 10.1016/j.coco.2018.06.008

    [16]

    Wang F C, Zhang Z H, Sun Y J, et al. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon, 2015, 95: 396 DOI: 10.1016/j.carbon.2015.08.061

    [17]

    Lü S, Li J S, Li S F, et al. Effects of heat treatment on interfacial characteristics and mechanical properties of titanium matrix composites reinforced with discontinuous carbon fibers. J Alloys Compd, 2021, 877: 160313 DOI: 10.1016/j.jallcom.2021.160313

    [18]

    Munir K S, Zheng Y F, Zhang D L, et al. Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater Sci Eng A, 2017, 696: 10 DOI: 10.1016/j.msea.2017.04.026

    [19]

    Munir K S, Li Y C, Qian M, et al. Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites. Carbon, 2016, 99: 384 DOI: 10.1016/j.carbon.2015.12.041

    [20]

    Munir K S, Li Y C, Li J X, et al. Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites. Materialia, 2018, 3: 122 DOI: 10.1016/j.mtla.2018.08.015

    [21]

    Zhang X, Zhao N Q, He C N. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design–A review. Prog Mater Sci, 2020, 113: 100672 DOI: 10.1016/j.pmatsci.2020.100672

    [22] 冯俊, 姜中涛, 韩骐璘. 不连续增强钛基复合材料的研究进展. 粉末冶金技术, 2020, 38(5): 392 DOI: 10.19591/j.cnki.cn11-1974/tf.2019070001

    Feng J, Jiang Z T, Han Q L. Research progress on discontinuous reinforced titanium matrix composites. Powder Metall Technol, 2020, 38(5): 392 DOI: 10.19591/j.cnki.cn11-1974/tf.2019070001

    [23]

    Luo S D, Li Q, Tian J, et al. Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties. Scr Mater, 2013, 69: 29 DOI: 10.1016/j.scriptamat.2013.03.017

    [24]

    Geng L, Ni D R, Zhang J, et al. Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites. J Alloys Compd, 2008, 463(1): 488

    [25]

    Huang L J, Geng L, Xu H Y, et al. In situ TiC particles reinforced Ti6Al4V matrix composite with a network reinforcement architecture. Mater Sci Eng A, 2011, 528: 2859 DOI: 10.1016/j.msea.2010.12.046

    [26]

    Huang L J, Geng L, Peng H X, et al. High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture. Mater Sci Eng A, 2012, 534: 688 DOI: 10.1016/j.msea.2011.12.028

    [27]

    Zadra M, Girardini L. High-performance, low-cost titanium metal matrix composites. Mater Sci Eng A, 2014, 608: 155 DOI: 10.1016/j.msea.2014.04.066

    [28] 宋杰光, 纪岗昌, 李世斌, 等. 粉体包覆技术的研究进展. 材料导报, 2009, 23(增刊1): 164

    Song J G, Ji G C, Li S B, et al. Review on coating technology of powder. Mater Rev, 2009, 23(Suppl 1): 164

    [29]

    Li S F, Tan C, Liu Y, et al. Designing core-shell C-coated Ti–6Al–4V powders for high-performance nano-sized TiC platelets/particles synergistically reinforced Ti–6Al–4V composites. Materialia, 2018, 2: 68 DOI: 10.1016/j.mtla.2018.06.010

    [30]

    Li S F, Liu Y, Yang Y F. Activating trace Fe impurity as catalyst to plant carbon nanotubes within Ti–6Al–4V powders for high-performance Ti-matrix composites. Metall Mater Trans A, 2019, 50: 3975 DOI: 10.1007/s11661-019-05321-x

    [31]

    Li S F, Cui J Y, Yang Y F, et al. In situ growth of carbon nanotubes on Ti powder for strengthening of Ti matrix composite via nanotube-particle dual morphology. Metall Mater Trans A, 2020, 51: 5932 DOI: 10.1007/s11661-020-05988-7

    [32]

    Li S F, Yang Y F, Misra R D K, et al. Interfacial/intragranular reinforcement of titanium-matrix composites produced by a novel process involving core-shell structured powder. Carbon, 2020, 164: 378 DOI: 10.1016/j.carbon.2020.04.010

    [33]

    Li S F, Geng K, Misra R D K, et al. Commercial scale uniform powder coating for metal additive manufacturing. JOM, 2020, 72: 4639 DOI: 10.1007/s11837-020-04386-z

    [34]

    Vasanthakumar K, Karthiselva N S, Chawake N M, et al. Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures. J Alloys Compd, 2017, 709: 829 DOI: 10.1016/j.jallcom.2017.03.216

    [35]

    Adegbenjoa A O, Olubambia P A, Potgieter J H, et al. Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V. Mater Des, 2017, 128: 119 DOI: 10.1016/j.matdes.2017.05.003

    [36]

    Munir K S, Oldfield D T, Wen C. Role of process control agent in the synthesis of multi-walled carbon nanotubes reinforced titanium metal matrix powder mixtures. Adv Eng Mater, 2016, 18: 294 DOI: 10.1002/adem.201500346

    [37]

    Lee H J, Kim S H, Lee J C. Promotion of C diffusion to prepare a high-strength wear-resistant Ti alloy. Scr Mater, 2016, 115: 33 DOI: 10.1016/j.scriptamat.2015.12.024

    [38]

    Hao Y J, Liu J X, Li J H, et al. Rapid preparation of TiC reinforced Ti6Al4V based composites by carburizing method through spark plasma sintering technique. Mater Des, 2015, 65: 94 DOI: 10.1016/j.matdes.2014.09.008

    [39]

    Zhang X J, Song F, Wei Z P, et al. Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction. Mater Sci Eng A, 2017, 705: 153 DOI: 10.1016/j.msea.2017.08.079

    [40]

    Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature, 2019, 576: 91 DOI: 10.1038/s41586-019-1783-1

    [41]

    Yu W H, Sing S L, Chua C K, et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review. Prog Mater Sci, 2019, 104: 330 DOI: 10.1016/j.pmatsci.2019.04.006

    [42]

    Yan Q, Chen B, Li J S. Super-high-strength graphene/titanium composites fabricated by selective laser melting. Carbon, 2021, 174: 451 DOI: 10.1016/j.carbon.2020.12.047

    [43]

    Zeng X, Yamaguchi T, Nishio K. Characteristics of Ti(C, N)/TiB composite layer on Ti–6Al–4V alloy produced by laser surface melting. Opt Laser Technol, 2016, 80: 84 DOI: 10.1016/j.optlastec.2016.01.004

    [44]

    Gu D D, Hagedorn Y C, Meiners W, et al. Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance. Surf Coat Technol, 2011, 205: 3285 DOI: 10.1016/j.surfcoat.2010.11.051

    [45]

    Gu D D, Meng G B, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement. Scr Mater, 2012, 67: 185 DOI: 10.1016/j.scriptamat.2012.04.013

    [46]

    He B B, Chang K, Wu W H, et al. The formation mechanism of TiC reinforcement and improved tensile strength in additive manufactured Ti matrix nanocomposite. Vacuum, 2017, 143: 23 DOI: 10.1016/j.vacuum.2017.05.029

    [47]

    Liu Y, Li S F, Misra R D K, et al. Planting carbon nanotubes within Ti–6Al–4V to make high-quality composite powders for 3D printing high-performance Ti–6Al–4V matrix composites. Scr Mater, 2020, 183: 6 DOI: 10.1016/j.scriptamat.2020.03.009

    [48]

    Gu D D, Rao X W, Dai D H, et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: Processing optimization, microstructure evolution and mechanical properties. Addit Manuf, 2019, 29: 100801

    [49]

    Aboulkhair N T, Simonelli M, Salama E, et al. Evolution of carbon nanotubes and their metallurgical reactions in Al-based composites in response to laser irradiation during selective laser melting. Mater Sci Eng A, 2019, 765: 138307 DOI: 10.1016/j.msea.2019.138307

    [50]

    Zhang B C, Bi G J, Chew Y X, et al. Comparison of carbon-based reinforcement on laser aided additive manufacturing Inconel 625 composites. Appl Surf Sci, 2019, 490: 522 DOI: 10.1016/j.apsusc.2019.06.008

  • 期刊类型引用(2)

    1. 郑鑫轲,李俊. 建筑用高性能热轧钛-钢复合材料的力学性能研究. 兵器材料科学与工程. 2024(05): 33-38 . 百度学术
    2. 王凯,袁战伟,李姝,王婧伊,于源. 界面层厚度对HEA_p/Ti基复合材料力学性能的影响. 热加工工艺. 2024(21): 89-95 . 百度学术

    其他类型引用(1)

图(11)
计量
  • 文章访问数:  4492
  • HTML全文浏览量:  185
  • PDF下载量:  75
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-05-29
  • 录用日期:  2022-05-29
  • 网络出版日期:  2022-07-17
  • 刊出日期:  2022-10-27

目录

/

返回文章
返回