TiC对Fe55Nb15Ti15Ta15合金非晶形成能力、微观组织及热稳定性的影响

唐翠勇 谢文彬 邹泽昌 孙珍军 陈学永 沈嵘枫

唐翠勇, 谢文彬, 邹泽昌, 孙珍军, 陈学永, 沈嵘枫. TiC对Fe55Nb15Ti15Ta15合金非晶形成能力、微观组织及热稳定性的影响[J]. 粉末冶金技术, 2024, 42(1): 84-90. doi: 10.19591/j.cnki.cn11-1974/tf.2022100012
引用本文: 唐翠勇, 谢文彬, 邹泽昌, 孙珍军, 陈学永, 沈嵘枫. TiC对Fe55Nb15Ti15Ta15合金非晶形成能力、微观组织及热稳定性的影响[J]. 粉末冶金技术, 2024, 42(1): 84-90. doi: 10.19591/j.cnki.cn11-1974/tf.2022100012
TANG Cuiyong, XIE Wenbin, ZOU Zechang, SUN Zhenjun, CHEN Xueyong, SHEN Rongfeng. Effect of TiC on amorphous forming ability, microstructure, and thermal stability of Fe55Nb15Ti15Ta15 alloys[J]. Powder Metallurgy Technology, 2024, 42(1): 84-90. doi: 10.19591/j.cnki.cn11-1974/tf.2022100012
Citation: TANG Cuiyong, XIE Wenbin, ZOU Zechang, SUN Zhenjun, CHEN Xueyong, SHEN Rongfeng. Effect of TiC on amorphous forming ability, microstructure, and thermal stability of Fe55Nb15Ti15Ta15 alloys[J]. Powder Metallurgy Technology, 2024, 42(1): 84-90. doi: 10.19591/j.cnki.cn11-1974/tf.2022100012

TiC对Fe55Nb15Ti15Ta15合金非晶形成能力、微观组织及热稳定性的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2022100012
基金项目: 福建省自然科学基金资助项目(2019J01404);福建省技术创新重点攻关及产业化项目(2023XQ005);福建省林业科技项目(2023FKJ01)
详细信息
    通讯作者:

    E-mail: hnrtcy@163.com

  • 中图分类号: TG139.8

Effect of TiC on amorphous forming ability, microstructure, and thermal stability of Fe55Nb15Ti15Ta15 alloys

More Information
  • 摘要: 铁基非晶合金存在非晶形成能力低、室温塑性差等问题,极大地限制了其在工程中的应用。基于“近混合焓+有效原子尺寸差”非晶合金成分设计理念设计了Fe55Nb15Ti15Ta15全金属组元粉末,采用机械合金化球磨工艺成功制备出非晶态合金粉末,并研究了TiC陶瓷粉末的加入对Fe55Nb15Ti15Ta15合金粉末非晶形成能力、微观形貌和热稳定性的影响。结果表明:Fe55Nb15Ti15Ta15合金粉末具有较好的非晶形成能力和热稳定性,TiC陶瓷粉末均匀稳定的分布于Fe55Nb15Ti15Ta15非晶合金粉末中。添加质量分数15%TiC陶瓷粉末延缓了球磨过程中Fe55Nb15Ti15Ta15合金粉末的合金化和非晶化进程,降低了热稳定性,使得球磨后粉末粒度变小,分布范围变宽。该项工艺可制备出具有较大室温塑性的大块铁基非晶合金原始粉末。
  • 图  1  Fe−Nb−Ti−Ta合金系各组元混合焓关系图

    Figure  1.  Formation enthalpy relationship diagram for each component in the Fe−Nb−Ti−Ta alloy system

    图  2  经不同时间球磨Fe55Nb15Ti15Ta15合金粉末的X射线衍射谱

    Figure  2.  XRD spectra of the Fe55Nb15Ti15Ta15 alloy powders with different ball milling times

    图  3  经不同时间球磨Fe55Nb15Ti15Ta15+15%TiC合金粉末X射线衍射谱

    Figure  3.  XRD spectra of Fe55Nb15Ti15Ta15+15%TiC alloy powders with different ball milling times

    图  4  经不同时间球磨Fe55Nb15Ti15Ta15合金粉末显微形貌和能谱分析:(a)5 h;(b)20 h;(c)40 h;(d)70 h;(e)80 h;(f)能谱分析

    Figure  4.  SEM images and EDS spectrum of the Fe55Nb15Ti15Ta15 alloy powders with different ball milling times: (a) 5 h; (b) 20 h; (c) 40 h; (d) 70 h; (e) 80 h; (f) EDS spectrum

    图  5  经不同时间球磨Fe55Nb15Ti15Ta15+15%TiC合金粉末显微形貌和能谱分析:(a)5 h;(b)20 h;(c)40 h;(d)70 h;(e)80 h;(f)能谱分析

    Figure  5.  SEM images and EDS spectrum of the Fe55Nb15Ti15Ta15+15%TiC alloy powders with different ball milling times: (a) 5 h; (b) 20 h; (c) 40 h; (d) 70 h; (e) 80 h; (f) EDS spectrum

    图  6  球磨80 h后Fe55Nb15Ti15Ta15合金粉末示差扫描量热曲线

    Figure  6.  DSC curves of the Fe55Nb15Ti15Ta15 alloy powders after ball milling for 80 h

    图  7  球磨80 h后Fe55Nb15Ti15Ta15+15%TiC合金粉末示差扫描量热曲线

    Figure  7.  DSC curves of the Fe55Nb15Ti15Ta15+15%TiC alloy powders after ball milling for 80 h

    图  8  Fe55Nb15Ti15Ta15非晶合金粉末和Fe55Nb15Ti15Ta15+15%TiC合金粉末晶化激活能Kissinger曲线

    Figure  8.  Kissinger curves of the activation energy for the Fe55Nb15Ti15Ta15 amorphous alloy powders and Fe55Nb15Ti15Ta15+15%TiC powders

  • [1] McHenry M E, Willard M A, Laughlin D E. Amorphous and nanocrystalline materials for applications as soft magnets. Prog Mater Sci, 1999, 44: 291 doi: 10.1016/S0079-6425(99)00002-X
    [2] Zhang G Y, Ni H W, Li Y, et al. Fe-based amorphous alloys with superior soft-magnetic properties prepared via smelting reduction of high-phosphorus oolitic iron ore. Intermetallics, 2022, 141: 107441 doi: 10.1016/j.intermet.2021.107441
    [3] Lin T J, Sheu H H, Lee C Y, et al. The study of mechanical properties and corrosion behavior of the Fe-based amorphous alloy coatings using high velocity oxygen fuel spraying. J Alloys Compd, 2021, 867: 159132 doi: 10.1016/j.jallcom.2021.159132
    [4] Li F C, Liu T, Zhang J Y, et al. Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Mater Today Adv, 2019, 4: 100027 doi: 10.1016/j.mtadv.2019.100027
    [5] Chen G, Bei H B, Cao Y, et al. Enhanced plasticity in a Zr-based bulk metallic glass composite with in situ formed intermetallic phases. Appl Phys Lett, 2009, 95: 081908 doi: 10.1063/1.3211912
    [6] Guo S F, Liu L, Li N, et al. Fe-based bulk metallic glass matrix composite with large plasticity. Scr Mater, 2010, 62: 329 doi: 10.1016/j.scriptamat.2009.10.024
    [7] Verma L, Chandar M B, Nadakuduru V N, et al. The possibility of synthesizing an Al-based bulk metallic glass using powder metallurgy route. Mater Today Proc, 2021, 41(5): 1060
    [8] Ji L L, Yun X B, Lü Y Z. Zr50Ti5Cu27Ni10Al8 bulk amorphous alloy prepared by spark plasma sintering. Rare Met, 2020, 44(11): 1221

    吉丽丽, 运新兵, 吕云卓. 放电等离子烧结制备Zr50Ti5Cu27Ni10Al8块体非晶合金. 稀有金属, 2020, 44(11): 1221
    [9] Xiao Z Y, Tang C Y, Leo N T, et al. Formation of Fe–Nb–X (X=Zr, Ti) amorphous alloys from pure metal elements by mechanical alloying. Phys B, 2012, 407: 258 doi: 10.1016/j.physb.2011.10.043
    [10] Xiao Z Y, Luo F, Tang C Y, et al. Study of amorphous phase in Fe100− x (NbTiTa) x alloys synthesized by mechanical alloying and its effect on the crystallization phenomenon. J Non-Cryst Solids, 2014, 385: 117 doi: 10.1016/j.jnoncrysol.2013.11.005
    [11] Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci, 2001, 46: 1 doi: 10.1016/S0079-6425(99)00010-9
    [12] Sun Y M. Structure and thermal behavior of multicomponent Fe68− x Ni x Zr15Nb5B12 ( x = 5, 10, 15, 20) alloys. J Alloys Compd, 2011, 509: 499 doi: 10.1016/j.jallcom.2010.09.079
    [13] Chen Z, Zhu Q K, Zhu Z T, et al. Effects of P addition on the glass forming ability, crystallization behaviour and soft magnetic properties of FeNi-based amorphous alloy. Intermetallics, 2022, 144: 107533 doi: 10.1016/j.intermet.2022.107533
    [14] Adelfar R, Mirzadeh H, Ataie A, et al. Crystallization kinetics of mechanically alloyed amorphous Fe−Ti alloys during annealing. Adv Powder Technol, 2020, 31: 3215 doi: 10.1016/j.apt.2020.06.006
    [15] Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand, 1956, 57(4): 217 doi: 10.6028/jres.057.026
  • 加载中
图(8)
计量
  • 文章访问数:  1613
  • HTML全文浏览量:  15
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 刊出日期:  2024-02-28

目录

    /

    返回文章
    返回