电流辅助烧结Cu原子扩散激活能影响机理的第一性原理计算与实验研究

赵博 张晓敏 赵志鹏 吴琼 高鑫

赵博, 张晓敏, 赵志鹏, 吴琼, 高鑫. 电流辅助烧结Cu原子扩散激活能影响机理的第一性原理计算与实验研究[J]. 粉末冶金技术.
引用本文: 赵博, 张晓敏, 赵志鹏, 吴琼, 高鑫. 电流辅助烧结Cu原子扩散激活能影响机理的第一性原理计算与实验研究[J]. 粉末冶金技术.
ZHAO Bo, ZHANG Xiaomin, ZHAO Zhipeng, WU Qiong, GAO Xin. First-principles calculation and experimental study on the influence mechanism of diffusion activation energy of Cu atoms in current-assisted sintering[J]. Powder Metallurgy Technology.
Citation: ZHAO Bo, ZHANG Xiaomin, ZHAO Zhipeng, WU Qiong, GAO Xin. First-principles calculation and experimental study on the influence mechanism of diffusion activation energy of Cu atoms in current-assisted sintering[J]. Powder Metallurgy Technology.

电流辅助烧结Cu原子扩散激活能影响机理的第一性原理计算与实验研究

基金项目: 国家自然科学基金面上项目(11872130);国家自然科学基金面上项目(12272065)
详细信息
    通讯作者:

    E-mail: xiaomin@cqu.edu.cn

  • 中图分类号: TF124.1

First-principles calculation and experimental study on the influence mechanism of diffusion activation energy of Cu atoms in current-assisted sintering

More Information
  • 摘要: 电流辅助烧结的快速致密化是电致效应的基础之一,将这种机制表征为电场强度对烧结的表观(或扩散)激活能的影响进行了大量实验研究,并且取得显著的进展。本文从第一性原理计算与电流辅助烧结实验两个方面,对晶体Cu在外加电场对扩散激活能的影响规律进行了研究,两者的研究结果揭示扩散激活能在电场或电流作用下呈现出明显规律性的下降趋势。另外,通过改变石墨模具内径来调整电流密度的方式开展电流辅助烧结实验,来验证第一性原理计算与电流辅助烧结实验扩散激活能的下降规律的正相关性。
  • 图  1  Cu晶体结构

    Figure  1.  Cu crystal structure

    图  2  空位扩散机理示意图

    Figure  2.  Schematic diagram of the vacancy diffusion mechanism

    图  3  (a)无空位的Cu超晶胞;(b)存在一个空位的Cu超晶胞

    Figure  3.  (a) Cu supercell without vacancies; (b) Cu supercell with one vacancy

    图  4  (a)迁移初始状态;(b)迁移最终状态

    Figure  4.  (a) Initial state of migration; (b) final state of migration

    图  5  Cu原子在Cu超晶胞中迁移的能量分布和最小能量路径

    Figure  5.  Energy distribution and MEP diagram of Cu atom migration in Cu supercell

    图  6  (a)Cu界面的晶体结构;(b)无电场Cu原子界面扩散能量路径;(c)、(d)、(e)分别为第1阶段、第2阶段、第3阶段的最小能量分布

    Figure  6.  (a) Crystal structure of Cu interface; (b) interfacial diffusion energy path of Cu atoms without electric field; the minimum energy distribution of (c) stage 1, (d) stage 2 and (e) stage 3

    图  7  (a)计算和(b)修正后的递增场强下Cu原子各层的空位形成能

    Figure  7.  (a) Calculated and (b) corrected vacancy formation energy at each layer of Cu atom under increasing field strength

    图  8  电场强度是(a)1 V·Å−1和(b)4 V·Å−1时Cu原子界面扩散能量路径第1、2、3阶段的最小能量分布

    Figure  8.  The minimum energy distribution of the Cu atomic interface diffusion energy paths in stage 1, stage 2 and stage 3 of the electric field strength of 1 V·Å−1 (a) and 4 V·Å−1 (b)

    图  9  0~6 V·Å−1电场强度下Cu界面扩散系统各阶段的原子迁移能

    Figure  9.  Atomic migration energy of Cu interfacial diffusion system in each stage of the electric field strength of 0~6 V·Å−1

    图  10  0~6 V·Å−1电场强度下Cu界面扩散系统体扩散激活能

    Figure  10.  Bulk diffusion activation energy of Cu interfacial diffusion system of the electric field strength of 0~6 V·Å−1

    图  11  不同直径的电流密度和时间关系

    Figure  11.  Relationship between current density and time of different diameters

    图  12  (a)不同内径的石墨模具;(b)电流辅助烧结制备的不同直径的Cu块

    Figure  12.  (a) Graphite dies with different inner diameters; (b) Cu blocks of different diameters prepared by current-assisted sintering

    图  13  烧结温度为500 °C时不同石墨内径的烧结致密化曲线

    Figure  13.  Sintering densification curves with graphite different inner diameters at 500 °C

    图  14  不同模具内径的$ \ln ({\raise0.7ex\hbox{${{\text{d}}\dot \rho }$} \mathord{\left/ {\vphantom {{{\text{d}}\dot \rho } {{\text{d}}T}}}\right.} \lower0.7ex\hbox{${{\text{d}}T}$}} \times T) $与1/T的关系曲线:(a)8 mm;(b)10 mm;(c)25 mm;(d)30 mm

    Figure  14.  Relationship curves of $ \ln ({\raise0.7ex\hbox{${{\text{d}}\dot \rho }$} \mathord{\left/ {\vphantom {{{\text{d}}\dot \rho } {{\text{d}}T}}}\right.} \lower0.7ex\hbox{${{\text{d}}T}$}} \times T) $and 1/T of different die inner diameters: (a) 8 mm; (b) 10 mm; (c) 25 mm; (d) 30 mm

    图  15  扩散激活能随(a)电场强度和(b)电流密度下降趋势图

    Figure  15.  Decreasing trend of diffusion activation energy with current density (a) and electric field strength (b)

    表  1  Cu的空位形成能

    Table  1.   Vacancy formation energy of Cu eV

    EVaEPerEVF
    −397.78−402.831.32
    下载: 导出CSV

    表  2  Cu的扩散激活能

    Table  2.   Diffusion activation energy of Cu eV

    数据比较EVF ESAMEDA
    本文计算值1.320.792.11
    已有实验值1[23]1.22±0.020.712.07
    已有实验值2[23]1.29±0.020.902.07
    下载: 导出CSV

    表  3  无电场Cu界面扩散系统各层的空位形成能

    Table  3.   Vacancy formation energy of each layer of interfacial diffusion system without electric field eV

    层数 EVaEPerEVF
    第1层−195.02−199.320.74
    第2层−194.611.15
    第3层−194.441.32
    第4层−194.441.32
    下载: 导出CSV
  • [1] Choi J, Sung H M, Roh K B, et al. Fabrication of sintered tungsten by spark plasma sintering and investigation of thermal stability. Int J Refractory Met Hard Mater, 2017, 69: 164 doi: 10.1016/j.ijrmhm.2017.08.013
    [2] Terentyev D, Vilémová M, Yin C, et al. Assessment of mechanical properties of SPS-produced tungsten including effect of neutron irradiation. Int J Refractory Met Hard Mater, 2020, 89: 105207 doi: 10.1016/j.ijrmhm.2020.105207
    [3] Deng S H, Li J N, Li R D, et al. The effect of particle size on the densification kinetics of tungsten powder during spark plasma sintering. Int J Refractory Met Hard Mater, 2020, 93: 105358 doi: 10.1016/j.ijrmhm.2020.105358
    [4] Li J, Ding S Y, Zhu J S, et al. Current‐density dependence of activation energy in high‐Tc superconductor HgBa2Ca2Cu3O8+x. J Appl Phys, 1995, 77(12): 6398 doi: 10.1063/1.359113
    [5] Garay J E, Anselmi-Tamburini U, Munir Z A. Enhanced growth of intermetallic phases in the Ni–Ti system by current effects. Acta Mater, 2003, 51(15): 4487 doi: 10.1016/S1359-6454(03)00284-2
    [6] Kondo T, Kuramoto T, Kodera Y, et al. Enhanced growth of Mo2C formed in Mo-C diffusion couple by pulsed DC current. J Jap Soc Powder Powder Metall, 2008, 55(9): 643 doi: 10.2497/jjspm.55.643
    [7] Deng S H, Li R D, Yuan T C, et al. Direct current-enhanced densification kinetics during spark plasma sintering of tungsten powder. Scripta Mater, 2018, 143: 25 doi: 10.1016/j.scriptamat.2017.09.009
    [8] Lou H Z, Wang H B, Liu X M, et al. Molecular dynamics simulation on friction and wear behavior of WC–Co cemented carbides. Powder Metall Technol, 2022, 40(5): 8

    娄鹤子, 王海滨, 刘雪梅, 等. WC–Co硬质合金摩擦磨损行为的分子动力学模拟. 粉末冶金技术, 2022, 40(5): 8
    [9] Mukherjee S, Banwait A, Grixti S, et al. Adsorption and diffusion of lithium and sodium on defective rhenium disulfide: A first principles study. ACS Appl Mater Interfaces, 2018, 10(6): 5373 doi: 10.1021/acsami.7b13604
    [10] Yuan Z H, Kong X G, Ma S G, et al. Adsorption and diffusion mechanism of hydrogen atom on the Li2O (111) and (110) surfaces from first principles calculations. J Nuclear Mater, 2018, 513: 232
    [11] Lu H J, Wu H, Zou N, et al. First-principles investigation on diffusion mechanism of alloying elements in dilute Zr alloys. Acta Mater, 2018, 154: 161 doi: 10.1016/j.actamat.2018.05.015
    [12] Lu C, Yang J, Zhao Y, et al. Influence of applied electric field on atom diffusion behavior and mechanism for W/NiFe interface in diffusion bonding of Steel/NiFe interlayer/W by spark plasma sintering. Appl Surface Sci, 2021, 541: 148516 doi: 10.1016/j.apsusc.2020.148516
    [13] Zhang L Y, Peng C T, Shi J, et al. Surface alloying of chromium/tungsten/stannum on pure nickel and theoretical analysis of strengthening mechanism. Appl Surface Sci, 2020, 532: 147477 doi: 10.1016/j.apsusc.2020.147477
    [14] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140(4A): A1133 doi: 10.1103/PhysRev.140.A1133
    [15] Peng H W, Perdew J P. Rehabilitation of the Perdew-Burke-Ernzerhof generalized gradient approximation for layered materials. Phys Rev B, 2017, 95(8): 081105 doi: 10.1103/PhysRevB.95.081105
    [16] You J S, Fang S, Xu S Y, et al. Berry curvature dipole current in transition metal dichalcogenides family. Phys rev, 2018, 98(12): 121109 doi: 10.1103/PhysRevB.98.121109
    [17] Hwang J, Noh S H, Han B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Appl Surface Sci, 2019, 471(31): 545
    [18] Zhang X, Grabowski B, Körmann F, et al. Accurate electronic free energies of the 3 d, 4 d, and 5 d transition metals at high temperatures. Phys Rev B, 2017, 95(16): 165126 doi: 10.1103/PhysRevB.95.165126
    [19] Kittel C, Hellwarth R W. Introduction to solid state physics. Phys Today, 1957, 10(6): 43 doi: 10.1063/1.3060399
    [20] Wang Y, Curtarolo S, Jiang C, et al. Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad, 2004, 28(1): 79 doi: 10.1016/j.calphad.2004.05.002
    [21] Naghavi S S, Hegde V I, Wolverton C. Diffusion coefficients of transition metals in fcc cobalt. Acta Mater, 2017, 132: 467 doi: 10.1016/j.actamat.2017.04.060
    [22] Esfandiarpour A, Nasrabadi M N. Vacancy formation energy in CuNiCo equimolar alloy and CuNiCoFe high entropy alloy: ab initio based study. Calphad, 2019, 66: 101634 doi: 10.1016/j.calphad.2019.101634
    [23] Wang S H. Computer simulation of vacancies in Cu. J Lanzhou Railway Inst, 1997, 16(4): 43

    王顺花. Cu中空位的计算机模拟. 兰州铁道学院学报, 1997, 16(4): 43
    [24] Makov G, Shah R, Payne M C. Periodic boundary conditions in ab initio calculations. II. Brillouin-zone sampling for aperiodic systems. Phys Rev B Condens Matter, 1996, 53(23): 15513
    [25] Yu X X, Thompson G B, Weinberger C R. Influence of carbon vacancy formation on the elastic constants and hardening mechanisms in transition metal carbides. J Europ Ceram Soc, 2015, 35(1): 95 doi: 10.1016/j.jeurceramsoc.2014.08.021
    [26] Wang J, Raj R. Activation energy for the sintering of two‐phase alumina/zirconia ceramics. J Am Ceram Soci, 1991, 74(8): 1959 doi: 10.1111/j.1151-2916.1991.tb07815.x
    [27] Zhang J P, Zuo H Y, Luo J M, et al. Neck formation and grain growth kinetics of copper powder during microwave sintering. Trans Mater Heat Treat, 2018, 39(6): 118 doi: 10.13289/j.issn.1009-6264.2018-0018

    张剑平, 左红艳, 罗军明, 等. 微波场中铜粉烧结颈形成和晶粒长大动力学. 材料热处理学报, 2018, 39(6): 118 doi: 10.13289/j.issn.1009-6264.2018-0018
    [28] Demuynck M, Erauw J P, Van der Biest O, et al. Densification of alumina by SPS and HP: A comparative study. J Europ Ceram Soc, 2012, 32(9): 1957 doi: 10.1016/j.jeurceramsoc.2011.10.031
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  118
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20

目录

    /

    返回文章
    返回