放电等离子烧结制备细晶AlN陶瓷

赵东亮 何庆 朱在稳 尹海清 秦明礼

赵东亮, 何庆, 朱在稳, 尹海清, 秦明礼. 放电等离子烧结制备细晶AlN陶瓷[J]. 粉末冶金技术, 2024, 42(1): 29-35. doi: 10.19591/j.cnki.cn11-1974/tf.2023020012
引用本文: 赵东亮, 何庆, 朱在稳, 尹海清, 秦明礼. 放电等离子烧结制备细晶AlN陶瓷[J]. 粉末冶金技术, 2024, 42(1): 29-35. doi: 10.19591/j.cnki.cn11-1974/tf.2023020012
ZHAO Dongliang, HE Qing, ZHU Zaiwen, YIN Haiqing, QIN Mingli. Preparation of nanocrystalline AlN ceramics by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(1): 29-35. doi: 10.19591/j.cnki.cn11-1974/tf.2023020012
Citation: ZHAO Dongliang, HE Qing, ZHU Zaiwen, YIN Haiqing, QIN Mingli. Preparation of nanocrystalline AlN ceramics by spark plasma sintering[J]. Powder Metallurgy Technology, 2024, 42(1): 29-35. doi: 10.19591/j.cnki.cn11-1974/tf.2023020012

放电等离子烧结制备细晶AlN陶瓷

doi: 10.19591/j.cnki.cn11-1974/tf.2023020012
基金项目: 河北省省级科技计划资助项目(20311001D)
详细信息
    通讯作者:

    Email: dongliang.zhao@sinopack.cc

  • 中图分类号: TF123; O659.2

Preparation of nanocrystalline AlN ceramics by spark plasma sintering

More Information
  • 摘要: 采用纯纳米AlN粉和掺杂质量分数3%Y2O3的纳米AlN粉为原料,经放电等离子烧结工艺制备AlN陶瓷,研究了两类AlN陶瓷的相对密度、微观组织、力学性能和导热性能。结果表明:纯纳米AlN粉和掺杂Y2O3纳米AlN粉在40~60 MPa下,经1500 ℃放电等离子烧结5~60 min,均可获得相对密度>99%的AlN陶瓷。当烧结压力为50 MPa时,获得的AlN陶瓷晶粒尺寸最小,分别为176 nm和190 nm,细化晶粒明显提高了AlN陶瓷硬度和抗弯强度。当烧结时间从5 min延长至60 min时,两种AlN陶瓷晶粒尺寸分别增大至1.71 μm和1.73 μm。晶粒长大导致AlN陶瓷硬度和抗弯强度下降,但提升了导热性能。通过对比发现,相同放电等离子烧结工艺下添加烧结助剂Y2O3能够有效提升AlN陶瓷的综合性能。
  • 图  1  放电等离子烧结工艺示意图

    Figure  1.  Schematic diagram of the spark plasma sintering

    图  2  不同烧结时间AY0和AY3试样断口的场发射扫描电子显微镜背散射形貌:(a)AY0,5 min;(b)AY0,30 min;(c)AY0,60 min;(d)AY3,5 min;(e)AY3,30 min;(f)AY3;60 min

    Figure  2.  FESEM back scatter images of the AY0 and AY3 fracture microstructures with the different sintering times: (a) AY0, 5 min; (b) AY0, 30 min; (c) AY0, 60 min; (d) AY3, 5 min; (e) AY3, 30 min; (f) AY3, 60 min

    图  3  AY0和AY3试样硬度和抗弯强度与烧结时间关系:(a)维氏硬度;(b)抗弯强度

    Figure  3.  Hardness and bending strength of AY0 and AY3 with the different sintering times: (a) Vickers hardness; (b) bending strength

    图  4  不同烧结压力下AY0和AY3试样断口场发射扫描电子显微镜背散射形貌:(a)AY0,40 MPa;(b)AY0,50 MPa;(c)AY0,60 MPa;(d)AY3,40 MPa;(e)AY3,50 MPa;(f)AY3;60 MPa

    Figure  4.  FESEM back scatter images of the AY0 and AY3 fracture microstructures with the different pressures: (a) AY0, 40 MPa; (b) AY0, 50 MPa; (c) AY0, 60 MPa; (d) AY3, 40 MPa; (e) AY3, 50 MPa; (f) AY3, 60 MPa

    图  5  AY0和AY3试样力学性能随压力变化关系:(a)维氏硬度;(b)抗弯强度

    Figure  5.  Mechanical properties of AY0 and AY3 under the different pressures: (a) Vickers hardness; (b) bending strength

    图  6  AY0和AY3试样晶粒尺寸与抗弯强度关系

    Figure  6.  Relationship between the grain size and bending strength of the AY0 and AY3 samples

    图  7  AY0和AY3试样热导率(a)和物相组成(b)随烧结时间变化

    Figure  7.  Thermal conductivity (a) and phases composition (b) of AY0 and AY3 with the different sintering times

    表  1  不同烧结时间放电等离子烧结试样的相对密度和平均晶粒尺寸

    Table  1.   Relative densities and the average grain sizes of the SPS samples for the different sintering times

    样品相对密度 / %晶粒尺寸 / nm
    5 min30 min60 min5 min30 min60 min
    AY099.2599.4699.332833321710
    AY399.1299.3999.0776716701730
    下载: 导出CSV

    表  2  不同烧结压力下试样的平均晶粒尺寸和相对密度

    Table  2.   Average grain sizes and the relative densities of the SPS samples under the different pressures

    样品相对密度 / %晶粒尺寸 / nm
    40 MPa50 MPa60 MPa40 MPa50 MPa60 MPa
    AY099.0699.5699.48283176574
    AY399.2799.4499.52513190353
    下载: 导出CSV
  • [1] Zhang Y Q, Yin S Y, Gao X Y, et al. Study on aluminum nitride microwave attenuation ceramics with high thermal conductivity. Rare Met Mater Eng, 2020, 49(2): 655

    张永清, 阴生毅, 高向阳, 等. 新型高热导率氮化铝基微波衰减陶瓷研究. 稀有金属材料与工程, 2020, 49(2): 655
    [2] Zhang J B, Niu T, Cui K, et al. Technology of ENEPEG on AlN HTCC. Electron Mech Eng, 2020, 36(1): 42

    张静波, 牛通, 崔凯, 等. 氮化铝多层共烧陶瓷基板的化学镀镍钯金技术. 电子机械工程, 2020, 36(1): 42
    [3] Chen L J, Xu X Y, Lei Y H, et al. A novel piezoelectric vibration sensor with aluminum nitride crystal at high temperature. J China Acad Electron Inf Technol, 2020, 15(12): 1212

    陈丽洁, 徐兴烨, 雷亚辉, 等. 新型氮化铝AlN晶体高温压电振动传感器. 中国电子科学研究院学报, 2020, 15(12): 1212
    [4] Sheng P F, Nie G L, Li Y H, et al. Research progress in shaping technology of AlN ceramics with high thermal conductivity. J Ceram, 2020, 41(6): 771

    盛鹏飞, 聂光临, 黎业华, 等. 高导热氮化铝陶瓷成型技术的研究进展. 陶瓷学报, 2020, 41(6): 771
    [5] Molisani A L, Goldenstein H, Yoshimura H N. The role of CaO additive on sintering of aluminum nitride ceramics. Ceram Int, 2017, 43(18): 16972 doi: 10.1016/j.ceramint.2017.09.104
    [6] He X L, Ye F, Zhang H J, et al. Study of rare-earth oxide sintering additive systems for spark plasma sintering AlN ceramics. Mater Sci Eng A, 2010, 527(20): 5268 doi: 10.1016/j.msea.2010.04.098
    [7] Wang L L, Ma B Y, Liu C M, et al. The latest research progress on thermal conductivity and bending strength of AlN ceramics. Refract Lime, 2023, 48(1): 23 doi: 10.3969/j.issn.1673-7792.2023.1.gwnhcl202301007

    王露露, 马北越, 刘春明, 等. AlN陶瓷热导率及抗弯强度影响因素研究的新进展. 耐火与石灰, 2023, 48(1): 23 doi: 10.3969/j.issn.1673-7792.2023.1.gwnhcl202301007
    [8] Wang L L, Ma B Y, Liu C M, et al. Research progress on sintering technology and performance optimization of AlN ceramics. Refractories, 2022, 56(2): 180

    王露露, 马北越, 刘春明, 等. AlN陶瓷烧结技术及性能优化研究进展. 耐火材料, 2022, 56(2): 180
    [9] Troczynski T B, Nicholson P S. Effect of additives on the pressureless sintering of aluminum nitride between 1500 and 1800 ℃. J Am Ceram Soc, 1989, 72(8): 1488 doi: 10.1111/j.1151-2916.1989.tb07684.x
    [10] Xu G F, Li W L, Zhuang H R, et al. Microwave sintering of AlN ceramics. J Chin Ceram Soc, 1997, 25(1): 89

    徐耕夫, 李文兰, 庄汉锐, 等. 氮化铝陶瓷的微波烧结研究. 硅酸盐学报, 1997, 25(1): 89
    [11] Groza J R, Risbud S H, Yamazaki K. Plasma activated sintering of additive-free AlN powders to near-theoretical density in 5 minutes. J Mater Res, 1992, 7(10): 2643 doi: 10.1557/JMR.1992.2643
    [12] Akimoto S, Kijima K, Kitamura M. Time dependence of AlN densification by plasma sintering. J Ceram Soc Jpn, 1992, 100(1158): 196 doi: 10.2109/jcersj.100.196
    [13] Zhang B W, Ma B Y, Yin Y, et al. Latest development on ceramics and titanium alloy materials welded by SPS. Refractories, 2017, 51(2): 157 doi: 10.3969/j.issn.1001-1935.2017.02.018

    张博文, 马北越, 尹月, 等. SPS制备陶瓷及钛合金材料的新进展. 耐火材料, 2017, 51(2): 157 doi: 10.3969/j.issn.1001-1935.2017.02.018
    [14] Langer J, Hoffmann M, Guillon O. Electric field-assisted sintering and hot pressing of semiconductive zinc oxide: a comparative study. J Am Ceram Soc, 2011, 94(8): 2344 doi: 10.1111/j.1551-2916.2011.04396.x
    [15] Chaim R. Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater Sci Eng A, 2007, 443: 25 doi: 10.1016/j.msea.2006.07.092
    [16] Wu J Y, Chen F, Shen Q, et al. Spark plasma sintering and densification mechanisms of antimony-doped tin oxide nanoceramics. J Nanomater, 2013, 2013(1-3): 2
    [17] Saheb N, Iqbal Z, Khalil A, et al. Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater, 2012, 2012: 983470
    [18] Wang X T, Padture N P, Tanaka H. Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater, 2004, 3(8): 539 doi: 10.1038/nmat1161
    [19] Shen Z J, Zhao Z, Peng H, et al. Formation of tough interlocking microstructures in silicon nitride based ceramics by dynamic ripening. Nature, 2002, 417(6886): 266 doi: 10.1038/417266a
    [20] Basu B, Venkateswaran T, Kim D Y. Microstructure and properties of spark plasma-sintered ZrO2-ZrB2 nanoceramic composites. J Am Ceram Soc, 2006, 89(8): 2405 doi: 10.1111/j.1551-2916.2006.01083.x
    [21] He Q, Qin M L, Huang M, et, al. Mechanism and kinetics of combustion-carbothermal synthesis of AlN nanopowders. Ceram Int, 2017, 43(12): 8755 doi: 10.1016/j.ceramint.2017.04.006
    [22] Pezzotti G, Nakahira A, Tajika M. Effect of extended annealing cycles on the thermal conductivity of AlN/Y2O3 ceramics. J Eur Ceram Soc, 2000, 20(9): 1319 doi: 10.1016/S0955-2219(99)00286-1
    [23] Bernard-Granger G, Addad A, Fantozzi G, et al. Spark plasma sintering of a commercially available granulated zirconia powder: comparison with hot-pressing. Acta Mater, 2010, 58(9): 3390 doi: 10.1016/j.actamat.2010.02.013
    [24] Langer J, Hoffmann M J, Guillon O. Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina. Acta Mater, 2009, 57(18): 5454 doi: 10.1016/j.actamat.2009.07.043
    [25] Langer J, Hoffmann M J, Guillon O. Electric field-assisted sintering in comparison to hot pressing of yttria-stabilized zirconia. J Am Ceram Soc, 2011, 94(1): 24 doi: 10.1111/j.1551-2916.2010.04016.x
    [26] Fang Z G, Wang H T, Kumar V. Coarsening, densification, and grain growth during sintering of nano-sized powders-A perspective. Int J Refract Met Hard Mater, 2017, 62: 110 doi: 10.1016/j.ijrmhm.2016.09.004
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1655
  • HTML全文浏览量:  29
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 刊出日期:  2024-02-28

目录

    /

    返回文章
    返回