水基喷雾造粒制备高导热球形氮化铝填料

赵东亮 秦明礼 鲁慧峰

赵东亮, 秦明礼, 鲁慧峰. 水基喷雾造粒制备高导热球形氮化铝填料[J]. 粉末冶金技术, 2024, 42(2): 170-176. doi: 10.19591/j.cnki.cn11-1974/tf.2023030011
引用本文: 赵东亮, 秦明礼, 鲁慧峰. 水基喷雾造粒制备高导热球形氮化铝填料[J]. 粉末冶金技术, 2024, 42(2): 170-176. doi: 10.19591/j.cnki.cn11-1974/tf.2023030011
ZHAO Dongliang, QIN Mingli, LU Huifeng. Preparation of high thermal conductivity spherical aluminum nitride fillers by water-based spray granulation[J]. Powder Metallurgy Technology, 2024, 42(2): 170-176. doi: 10.19591/j.cnki.cn11-1974/tf.2023030011
Citation: ZHAO Dongliang, QIN Mingli, LU Huifeng. Preparation of high thermal conductivity spherical aluminum nitride fillers by water-based spray granulation[J]. Powder Metallurgy Technology, 2024, 42(2): 170-176. doi: 10.19591/j.cnki.cn11-1974/tf.2023030011

水基喷雾造粒制备高导热球形氮化铝填料

doi: 10.19591/j.cnki.cn11-1974/tf.2023030011
基金项目: 河北省省级科技计划资助项目(20311001D)
详细信息
    通讯作者:

    E-mail: dongliang.zhao@sinopack.cc

  • 中图分类号: TF123;TG142.71

Preparation of high thermal conductivity spherical aluminum nitride fillers by water-based spray granulation

More Information
  • 摘要: 氮化铝(AlN)因具有优异的导热能力和电绝缘性,是热界面材料中导热填料的理想材料。本文首先对AlN粉末进行表面改性,提高了AlN粉体的抗水解能力,然后采用水基溶剂进行喷雾造粒,在浆料配置过程中对球磨时间、添加剂用量等工艺参数进行了优化,制备了球形度高的AlN生坯,最后经脱脂烧结,制备出具有低氧含量、高球形度及高导热性的AlN填料。研究表明,磷酸改性后的AlN粉体在16 h球磨过程中可保持良好的抗水解能力。粘结剂含量(质量分数)对喷雾造粒后的生坯形状有明显影响,采用2%PVB+2%PEG粘结剂制备的粉末具有良好的球形度与表面光滑程度。经过脱脂烧结,AlN陶瓷微球的热导率和抗弯强度分别达到171.2 W·m−1·K−1和340 MPa,具有良好的流动性。综上所述,水基喷雾造粒制备的球形AlN适合用作热界面材料的导热填料。
  • 图  1  AlN粉体表面形貌(a)与粒度分布(b)

    Figure  1.  Surface morphology (a) and particle size distribution (b) of the raw AlN powders

    图  2  AlN悬浮液pH值随时间变化规律

    Figure  2.  Relationship between the pH value of AlN suspension and time

    图  3  不同球磨时间下AlN混合浆料氧质量分数变化情况

    Figure  3.  Relationship between the milling time and oxgen mass fraction of the AlN mixture slurry

    图  4  不同研磨时间下600 ℃煅烧后AlN粉末氧质量分数增加值

    Figure  4.  Increase in the oxgen mass fraction of AlN powders after milling for different time calcining at 600 ℃

    图  5  粘结剂对AlN浆料流变性能的影响

    Figure  5.  Influence of binders on the rheological properties of the AlN slurry

    图  6  添加不同含量粘结剂的造粒粉显微形貌:(a)1%PVB+1%PEG;(b)2%PVB+2%PEG;(c)3%PVB+3%PEG

    Figure  6.  SEM images of the AlN granules added by binders in different content: (a) 1%PVB+1%PEG; (b) 2%PVB+2%PEG; (c) 3%PVB+3%PEG

    图  7  选用2%PVA+2%PEG作为雾化造粒添加剂的AlN造粒粒度分布

    Figure  7.  Particle size distribution of the AlN granules using 2%PVA+2%PEG as binder

    图  8  坯体空气中热失重分析曲线(10 ℃·min−1

    Figure  8.  Thermogravimetric analysis curves of the green part in air (10 ℃·min−1)

    图  9  AlN造粒粉末热脱脂温度曲线图

    Figure  9.  Debinding curve of the AlN granules

    图  10  脱脂烧结后AlN陶瓷微观组织形貌

    Figure  10.  Microstructure of the AlN ceramic after degreasing sintering

    表  1  AlN原料粉末性能

    Table  1.   Performance of the raw AlN powders

    D10 / μmD50 / μmD90 / μm松装密度 / (g·cm−3)振实密度/ (g·cm−3)休止角 / (°)
    0.511.153.530.290.4345
    下载: 导出CSV

    表  2  选用2%PVA+2%PEG作为雾化造粒添加剂的AlN造粒粉末性能指标

    Table  2.   Performance of the AlN granules using 2%PVA+2%PEG as binder

    D10 / μmD50 / μmD90 / μm松装密度 / (g·cm−3)振实密度 / (g·cm−3)流动性 / (g·s−1)休止角 / (°)
    25.352.1105.40.931.051034
    下载: 导出CSV

    表  3  脱脂烧结后AlN陶瓷性能

    Table  3.   Performance of the AlN ceramic after degreasing sintering

    样品热导率 / (W·m−1·K−1)抗弯强度 / MPa维氏硬度,HV0.1
    AlN171.2340980
    下载: 导出CSV
  • [1] Hao X, Wan S Q, Zhao Z, et al. Enhanced thermal conductivity of epoxy composites by introducing 1D AlN whiskers and constructing directionally aligned 3D AlN filler skeletons. ACS Appl Mater Interfaces, 2023, 15(1): 2124 doi: 10.1021/acsami.2c18356
    [2] Niu H Y, Guo H C, Ren Y J, et al. Spherical aggregated BN/AlN filled silicone composites with enhanced through-plane thermal conductivity assisted by vortex flow. Chem Eng J, 2022, 430(4): 133155
    [3] Gong L, Xu Y P, Ding B, et al. Thermal management and structural parameters optimization of MCM-BGA 3D package model. Int J Therm Sci, 2020, 147: 106120 doi: 10.1016/j.ijthermalsci.2019.106120
    [4] Hsieh C Y, Chung S L. High thermal conductivity epoxy molding compound filled with a combustion synthesized AIN powder. J Appl Polym Sci, 2006, 102(5): 4734 doi: 10.1002/app.25000
    [5] Zhu B L, Wang J, Ma J, et al. Preparation and properties of aluminum nitride-filled epoxy composites: Effect of filler characteristics and composite processing conditions. J Appl Polym Sci, 2012, 127(5): 3456
    [6] Lee R R. Development of high thermal conductivity aluminum nitride ceramic. J Am Ceram Soc, 1991, 74(9): 2242 doi: 10.1111/j.1151-2916.1991.tb08291.x
    [7] Slack G A. Nonmetallic crystals with high thermal conductivity. J Phys Chem Solids, 1973, 34(2): 321 doi: 10.1016/0022-3697(73)90092-9
    [8] Lu H F. Study on Preparation and Injection Molding of Aluminum Nitride Powder [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    鲁慧峰. 氮化铝粉末制备及注射成形研究[学位论文]. 北京: 北京科技大学, 2019
    [9] Xu Y S, Chung D D L, Mroz C. Thermally conducting aluminum nitride polymer-matrix composites. Composites Part A, 2001, 32(12): 1749 doi: 10.1016/S1359-835X(01)00023-9
    [10] He Q, Qin M L, Huang M, et al. Synthesis of highly sinterable AlN nanopowders through sol-gel route by reduction-nitridation in ammonia. Ceram Int, 2019, 45(12): 14568 doi: 10.1016/j.ceramint.2019.04.174
    [11] Jiang H, Kang Z J, Xie Y F. Synthesis of aluminum nitride powder by aluminum powder direct nitridation. Rare Met, 2013, 37(3): 396 doi: 10.3969/j.issn.0258-7076.2013.03.010

    姜珩, 康志君, 谢元锋. 铝粉直接氮化法制备氮化铝粉末. 稀有金属, 2013, 37(3): 396 doi: 10.3969/j.issn.0258-7076.2013.03.010
    [12] Ma C, Chen G D, Yue J S. Structural characteristics of aluminum nitride synthesized by direct nitridization method. Funct Mater, 2011, 42(9): 1599

    马超, 陈光德, 苑进社. 直接氮化法制备氮化铝粉末的结构特性. 功能材料, 2011, 42(9): 1599
    [13] Joo H U, Jung W S. Effect of carbon monoxide on the carbothermal reduction and nitridation reaction of alumina. J Mater Process Technol, 2008, 204(1-3): 498 doi: 10.1016/j.jmatprotec.2008.01.028
    [14] Ide T, Komeya K, Meguro T. Synthesis of AlN powder by carbothermal reduction-nitridation of various Al2O3 powders with CaF2. J Am Ceram Soc, 2004, 82(11): 2993
    [15] Rong B J. Blending-Granulating Technology and Equipment for Raw Materials of Composite Friction Materials [Dissertation]. Changchun: Jilin University, 2005

    荣宝军. 复合摩擦材料原料颗粒化混料技术及设备[学位论文]. 长春: 吉林大学, 2005
    [16] Yang Z H, Xu Z Q, Wang J C, et al. Preparation and technology of spherical alumina spray granulation. Ceramics, 2019(3): 38 doi: 10.3969/j.issn.1002-2872.2019.03.006

    杨战厚, 徐子勤, 王军成, 等. 球形氧化铝粉体喷雾造粒法的制备及工艺研究. 陶瓷, 2019(3): 38 doi: 10.3969/j.issn.1002-2872.2019.03.006
    [17] Yang B F. Performance of Denitrification and Dephosphorization of Composite Artificial Zeolite Granule [Dissertation]. Beijing: University of Science and Technology Beijing, 2016

    杨炳飞. 复合人工沸石颗粒脱氮除磷性能研究[学位论文]. 北京: 北京科技大学, 2016
    [18] Du X L, Qin M L, Sun Y, et al. Structure and thermal conductivity of powder injection molded AlN ceramic. Adv Powder Technol, 2010, 21(4): 431 doi: 10.1016/j.apt.2010.01.001
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  27
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-25
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回