Re含量对TiCN–WC–HfN陶瓷微观组织和力学性能的影响

高姣姣 平萍 刘家宝 宋金鹏

高姣姣, 平萍, 刘家宝, 宋金鹏. Re含量对TiCN–WC–HfN陶瓷微观组织和力学性能的影响[J]. 粉末冶金技术, 2024, 42(1): 53-58. doi: 10.19591/j.cnki.cn11-1974/tf.2023040001
引用本文: 高姣姣, 平萍, 刘家宝, 宋金鹏. Re含量对TiCN–WC–HfN陶瓷微观组织和力学性能的影响[J]. 粉末冶金技术, 2024, 42(1): 53-58. doi: 10.19591/j.cnki.cn11-1974/tf.2023040001
GAO Jiaojiao, PING Ping, LIU Jiabao, SONG Jinpeng. Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 53-58. doi: 10.19591/j.cnki.cn11-1974/tf.2023040001
Citation: GAO Jiaojiao, PING Ping, LIU Jiabao, SONG Jinpeng. Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics[J]. Powder Metallurgy Technology, 2024, 42(1): 53-58. doi: 10.19591/j.cnki.cn11-1974/tf.2023040001

Re含量对TiCN–WC–HfN陶瓷微观组织和力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2023040001
基金项目: 国家自然科学基金资助项目(52205492);山西省基础研究计划资助项目(202103021223121)
详细信息
    通讯作者:

    E-mail: gaojiaojiao@tyut.edu.cn

  • 中图分类号: TF123; TB332

Effect of Re content on microstructure and mechanical properties of TiCN–WC–HfN ceramics

More Information
  • 摘要: 采用真空热压烧结技术制备了TiCN–WC–HfN陶瓷,研究了Re含量(摩尔分数)对其微观组织和力学性能的影响。结果表明:TiCN–WC–HfN–Ni–Re陶瓷材料由TiC0.41N0.5、WC、HfN、TiC、Ni和Re组成,其中TiC0.41N0.50是TiC与TiN在烧结过程中生成的固溶体。TiCN–WC–HfN–Ni–Re陶瓷材料断口上存在凹坑和解理面,当Re摩尔分数为2.5%时,材料断口上的凹坑较多。当Re摩尔分数由0增到3.0%时,材料的维氏硬度、抗弯强度和断裂韧度均先增大后减小。当Re摩尔分数为2.5%时,材料的力学性能最优,其维氏硬度为(19.25±0.21) GPa、抗弯强度为(1304±23) MPa、断裂韧度为(7.73±0.22) MPa∙m1/2。TiCN–WC–HfN–Ni–Re陶瓷在断裂过程中发生了穿晶断裂和沿晶断裂,其增韧机制为裂纹偏转和裂纹桥连。
  • 图  1  TiCN–WC–HfN(R3)陶瓷X射线衍射图谱

    Figure  1.  XRD patterns of the TiCN–WC–HfN (R3) ceramics

    图  2  TiCN–WC–HfN陶瓷显微形貌(a)及相组成(b)

    Figure  2.  Microstructure (a) and phase composition (b) of the TiCN–WC–HfN ceramics

    图  3  TiCN–WC–HfN陶瓷各相能谱分析:(a)黑色相;(b)白色相;(c)浅灰色相;(d)深灰色相

    Figure  3.  EDS analysis of the TiCN–WC–HfN ceramics: (a) black phase; (b) white phase; (c) light gray phase; (d) gray phase

    图  4  TiCN–WC–HfN陶瓷断口形貌:(a)R0;(b)R1;(c)R2;(d)R3

    Figure  4.  Fracture morphologies of the TiCN–WC–HfN ceramics: (a) R0; (b) R1; (c) R2; (d) R3

    图  5  Re含量对TiCN–WC–HfN陶瓷力学性能的影响

    Figure  5.  Relationship between the Re content and mechanical properties of the TiCN–WC–HfN ceramics

    图  6  TiCN–WC–HfN(R3)陶瓷裂纹扩展路径

    Figure  6.  Crack propagation of the TiCN–WC–HfN (R3) ceramics

    表  1  TiCN–WC–HfN陶瓷组分及含量(摩尔分数)

    Table  1.   Composition and content of the TiCN–WC–HfN ceramics %

    材料编号TiCTiNWCHfNNiRe
    R03030151510.00
    R1303015158.02.0
    R2303015157.52.5
    R3303015157.03.0
    下载: 导出CSV
  • [1] Pazhouhanfar Y, Namini A S, Delbari S A, et al. Microstructural and mechanical characterization of spark plasma sintered TiC ceramics with TiN additive. Ceram Int, 2020, 46: 18924 doi: 10.1016/j.ceramint.2020.04.215
    [2] Gu J H, Xiao P A, Xiao L Y, et al. Microstructure and mechanical properties of TiCP particle enhanced high chromium iron. Powder Metall Technol, 2021, 39(4): 319

    顾景洪, 肖平安, 肖利洋, 等. TiCP颗粒增强高铬铸铁复合材料的显微组织和力学性能. 粉末冶金技术, 2021, 39(4): 319
    [3] Li Y Y, Ni K Y, Zhu F W. Study of TiC particle-reinforced Cu matrix composites. Powder Metall Technol, 2018, 36(2): 106

    李月英, 倪慨宇, 祝夫文. TiC 颗粒增强铜基复合材料的研究. 粉末冶金技术, 2018, 36(2): 106
    [4] Fattahi M, Mohammadzadeh A, Pazhouhanfar Y, et al. Influence of SPS temperature on the properties of TiC-SiCw composites. Ceram Int, 2020, 46: 11735 doi: 10.1016/j.ceramint.2020.01.206
    [5] Shaddel S, Namini A S, Pazhouhanfar Y, et al. A microstructural approach to the chemical reactions during the spark plasma sintering of novel TiC–BN ceramics. Ceram Int, 2020, 46: 15982 doi: 10.1016/j.ceramint.2020.03.148
    [6] Nguyen T P, Pazhouhanfar Y, Delbari S A, et al. Role of nano-diamond addition on the characteristics of spark plasma sintered TiC ceramics. Diamond Relat Mater, 2020, 106: 107828 doi: 10.1016/j.diamond.2020.107828
    [7] Fattahi M, Asl M S, Delbari S A, et al. Role of nano-WC addition on microstructural, mechanical and thermal characteristics of TiC–SiCw composites. Int J Refract Met Hard Mater, 2020, 90: 105248 doi: 10.1016/j.ijrmhm.2020.105248
    [8] Cui X, Zhao B B, Lu M L. Research progress in preparation and application of titanium nitride. Hebei Metall, 2022(5): 34

    崔兴元, 赵备备, 卢明亮. 氮化钛的制备及应用. 河北冶金, 2022(5): 34
    [9] Wang S Q, Yang Q Q, Xiong W H, et al. Effect of Mo addition on microstructure, magnetic and mechanical properties of TiC–TiN–WC–Ni cermets. Cemen Carb, 2017, 34(2): 90

    王生青, 杨青青, 熊惟皓, 等. Mo添加对TiC–TiN–WC–Ni金属陶瓷显微组织与磁学、力学性能的影响. 硬质合金, 2017, 34(2): 90
    [10] Lyu Y H, Zhang Q Y, Liu Y, et al. Effect of microstructure of TiN/TiCN layer on the structural, mechanical and tribological properties of the Ti/TiN/TiCN films. Lubricants, 2023, 11: 21 doi: 10.3390/lubricants11010021
    [11] Abbas S N, Zohre A, Aziz B, et al. Microstructure and thermomechanical characteristics of spark plasma sintered TiC ceramics doped with nano-sized WC. Ceram Int, 2018, 45: 2153
    [12] Song J P, Cao L, Gao J J, et al. Effects of HfN content and metallic additives on the microstructure and mechanical properties of TiC0.7N0.3-based ceramic tool materials. J Alloys Compd, 2018, 753: 85
    [13] Yue X Y, Cai Z X, Lü X H, et al. Effect of Ni content on microstructures and mechanical properties of hot-pressed TiC–TiB2–Ni composite. Mater Sci Eng A, 2016, 668: 208 doi: 10.1016/j.msea.2016.05.053
    [14] Korosteleva E N, Korzhova V V, Krinitcyn M G. Sintering behavior and microstructure of TiC–Me composite powder prepared by SHS. Metals, 2017, 7: 290 doi: 10.3390/met7080290
    [15] Zi Y, Meng J, Zhang C W, et al. Mechanisms of rhenium on wettability and interactions between nickel base superalloy melt and Al2O3 based ceramic material. Acta Metall Sinica, 2020, 33: 1021 doi: 10.1007/s40195-020-01030-2
    [16] Marcin C, Anna P. Effect of Rhenium addition on wear behavior of Cr–Al2O3 metal matrix composites. J Mater Eng Perform, 2015, 24: 1871 doi: 10.1007/s11665-015-1462-9
    [17] Standardization Administration. GB/T6569-2006 Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method for Flexural Strength of Monolithic Ceramics at Room Temperature. Beijing: Standards Press of China, 2006

    国家标准化管理委员会. GB/T6569-2006精细陶瓷弯曲强度试验方法. 北京: 中国标准出版社, 2006
    [18] Standardization Administration. GB/T16534-2009 Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method for Hardness of Monolithic Ceramics at Room Temperature. Beijing: Standards Press of China, 2009

    国家标准化管理委员会. GB/T16534-2009精细陶瓷室温硬度试验方法. 北京: 中国标准出版社, 2009
    [19] Gao J J, Song J P, Wang Y, et al. Microstructures and mechanical properties of functionally graded TiCN–TaC ceramics prepared by a novel layer processing strategy. Ceram Int, 2022, 48: 16990 doi: 10.1016/j.ceramint.2022.02.254
    [20] Verma V, Manoj Kumar B V. Processing of TiCN–WC–Ni/Co cermets via conventional and spark plasma sintering technique. Trans Indian Inst Met, 2017, 70(3): 843 doi: 10.1007/s12666-017-1069-y
    [21] Yang F, Gao Y, Du P, et al. Microstructure and mechanical properties of WC-based cemented carbides with different binder phases. Powder Metall Technol, 2023, 41(2): 187

    杨方, 高阳, 度鹏, 等. 不同粘结相WC基硬质合金微观结构与性能. 粉末冶金技术, 2023, 41(2): 187
    [22] Gao J J, Song J P, Lü M, et al. Microstructure and mechanical properties of TiC0.7N0.3-HfC cermet toolmaterials. Ceram Int, 2018, 44: 17895
    [23] Song J P, Cao L, Jiang L K, et al. Effect of HfN, HfC and HfB2 additives on phase transformation, microstructure and mechanical properties of ZrO2-based ceramics. Ceram Int, 2018, 44: 5371 doi: 10.1016/j.ceramint.2017.12.164
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1322
  • HTML全文浏览量:  31
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 刊出日期:  2024-02-28

目录

    /

    返回文章
    返回