烧结温度对Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷微观组织和力学性能的影响

高姣姣 平萍 胡士恒 宋金鹏

高姣姣, 平萍, 胡士恒, 宋金鹏. 烧结温度对Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷微观组织和力学性能的影响[J]. 粉末冶金技术, 2024, 42(2): 115-121. doi: 10.19591/j.cnki.cn11-1974/tf.2023040006
引用本文: 高姣姣, 平萍, 胡士恒, 宋金鹏. 烧结温度对Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷微观组织和力学性能的影响[J]. 粉末冶金技术, 2024, 42(2): 115-121. doi: 10.19591/j.cnki.cn11-1974/tf.2023040006
GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. doi: 10.19591/j.cnki.cn11-1974/tf.2023040006
Citation: GAO Jiaojiao, PING Ping, HU Shiheng, SONG Jinpeng. Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics[J]. Powder Metallurgy Technology, 2024, 42(2): 115-121. doi: 10.19591/j.cnki.cn11-1974/tf.2023040006

烧结温度对Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷微观组织和力学性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2023040006
基金项目: 国家自然科学基金资助项目(52205492);山西省基础研究计划资助项目(202103021223121)
详细信息
    通讯作者:

    E-mail: gaojiaojiao@tyut.edu.cn

  • 中图分类号: TF12;TB332

Effect of sintering temperature on microstructure and mechanical properties of Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics

More Information
  • 摘要: 以Ti(C,N)为基体相,HfN和WC为不同层的增强相,金属Ni和Mo为粘结相,采用交替铺层法制备素坯,并利用真空热压烧结技术制备Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷,研究了烧结温度对层状陶瓷微观组织和力学性能的影响。结果表明:随着烧结温度的升高,材料中的晶粒逐渐长大,在烧结温度为1350 ℃和1400 ℃时,材料的晶粒较小但分布不均匀,且存在较多的微缺陷;在烧结温度为1450 ℃和1500 ℃时,材料中的晶粒相对均匀(粒径~1 μm),微缺陷较少;在烧结温度达到1550 ℃时,材料中出现了大量粗大晶粒(粒径~2 μm)。随着烧结温度的升高,层状陶瓷的抗弯强度、维氏硬度和断裂韧度均先增大后减小。在1450 ℃下所制备的Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷具有较好的综合力学性能,其抗弯强度、维氏硬度和断裂韧度分别为(1263.6±17.1)MPa、(18.5±0.3)GPa和(8.2±0.1)MPa·m1/2。此外,Ti(C,N)-HfN/Ti(C,N)-WC层状陶瓷在断裂时表现为穿晶与沿晶并存的断裂模式。
  • 图  1  层状陶瓷硬度及断裂韧度测试方式

    Figure  1.  Indentation diagram for hardness and fracture toughness testing of the laminated ceramic

    图  2  不同烧结温度下所制备的Ti(C,N)基层状陶瓷X射线衍射图谱:(a)TH层;(b)TW层

    Figure  2.  XRD patterns of the Ti(C,N)-based laminated ceramics sintered at different temperatures: (a) TH layer; (b) TW layer

    图  3  Ti(C,N)基层状陶瓷层间结合处的抛光面形貌及能谱分析

    Figure  3.  Polished surface images and EDS of the Ti(C,N)-based laminated ceramics

    图  4  Ti(C,N)基层状陶瓷断口形貌:(a)1350 ℃;(b)1400 ℃;(c)1450 ℃;(d)1500 ℃;(e)1550 ℃

    Figure  4.  Fracture morphologies of the Ti(C,N)-based laminated ceramic sintered at different sintering temperatures: (a) 1350 ℃; (b) 1400 ℃; (c) 1450 ℃; (d) 1500 ℃; (e) 1550 ℃

    图  5  Ti(C,N)基层状陶瓷的力学性能:(a)抗弯强度;(b)维氏硬度;(c)断裂韧度

    Figure  5.  Mechanical properties of the Ti(C,N)-based laminated ceramics: (a) flexural strength; (b) Vickers hardness; (c) fracture toughness

    表  1  原始粉末参数及生产商

    Table  1.   Parameters and manufacturer of the original powders

    原始粉末纯度 / %平均粒度 / μm生产商
    TiC0.7N0.399.91.0上海水田材料科技
    有限公司
    HfN99.90.8
    WC99.90.1
    Mo99.81.0
    Ni99.81.0
    下载: 导出CSV

    表  2  TiCN基层状金属陶瓷各层组分及含量(质量分数)

    Table  2.   Component and composition of the Ti(C,N)-HfN/Ti(C,N)-WC laminated ceramics %

    试样Ti(C,N)HfNWCNiMo
    Ti(C,N)-HfN (TH)7220044
    Ti(C,N)-WC (TW)7202044
    下载: 导出CSV

    表  3  原料物理参数[1819]

    Table  3.   Physical parameters of the raw materials

    材料Ti(C,N)HfNWCNiMo
    热膨胀系数 / (10−6K−1)8.616.007.3013.205.30
    下载: 导出CSV
  • [1] Duan P Q, Chen W L, Liu A J, et al. Study on mechanical properties and crack resistance of composite Ti(C, N) based cermets. J Phys Conf Ser, 2021, 2021: 012001 doi: 10.1088/1742-6596/2021/1/012001
    [2] Liu J W, Gu S Y, Chen Y, et al. Synthesis of Ti(C, N) powders by hydrolysis precipitation-carbothemal reduction and nitridation method. Powder Metall Technol, 2021, 39(1): 89

    刘嘉威, 古思勇, 陈莹, 等 水解沉淀-碳热还原氮化法制备碳氮化钛粉末. 粉末冶金技术, 2021, 39(1): 89
    [3] Pang J, Liu Y, Ye J W, et al. Microwave sintering of TiCN-based cermets prepared from electroless Co-coated (Ti, W, Mo, V)CN powders. Rare Met, 2022, 41: 4209 doi: 10.1007/s12598-016-0866-5
    [4] Li C, Li N, Liu X Q, et al. Effect of WC mass fraction on the microstructure and properties of Ti(C0.7N0.3)-based cermets. Powder Metall Technol, 2018, 36(2): 100

    李朝, 李楠, 柳学全, 等. WC质量分数对Ti(C0.7N0.3)基金属陶瓷组织和性能的影响. 粉末冶金技术, 2018, 36(2): 100
    [5] Song J P, Yu C G, Gao J J, et al. Effect of WC content on the microstructure and mechanical properties of TiCN-HfN cermet tool materials. Powder Metall Technol, 2020, 38(4): 243

    宋金鹏, 于成功, 高姣姣, 等. WC含量对TiCN-HfN金属陶瓷刀具材料微观组织和力学性能的影响. 粉末冶金技术, 2020, 38(4): 243
    [6] Wang S W, Zheng Y, Zhang G T, et al. Effect of NbC addition on the microstructure, mechanical properties and thermal shock resistance of Ti(C, N)-based cermets. Mater Res Express, 2019, 6(5): 056557 doi: 10.1088/2053-1591/ab07e9
    [7] Liu C, Lin N, He Y H. Influence of Mo2C and TaC additions on the microstructure and mechanical properties of Ti(C, N)-based cermets. Ceram Int, 2016, 42(2B): 3569
    [8] Zhang G T, Zheng Y, Zhang J J, et al. Effect of VC/Cr3C2 additions on the microstructure, interface structure and mechanical properties of Ti(C, N)-based cermets prepared by in situ carbothermal reduction of nano TiO2. Ceram Int, 2020, 46(7): 9698 doi: 10.1016/j.ceramint.2019.12.237
    [9] Shankar E, Balasivanandha P S, Padmanabhan K A. Effect of nano-TiB2 addition on the microstructure, mechanical properties and machining performance of TiCN cermet. J Am Ceram Soc, 2018, 54: 565 doi: 10.1007/s41779-018-0185-4
    [10] Liu Y M, Deng X L, Wu J T, et al. Effect of sintering temperature on microstructure and properties of Ti(C, N) tool materials. Met Mater Metall Eng, 2022, 50(1): 12

    刘懿漫, 邓小龙, 吴洁婷, 等. 烧结温度对Ti(C, N)刀具材料显微组织与性能的影响. 金属材料与冶金工程, 2022, 50(1): 12
    [11] Bao X Y, Zeng M Q, Lu Z C, et al. Influence of sintering temperature on microstructure and mechanical properties of Ti(C, N)-based cermets. Trans Mater Heat Treat, 2017, 38(5): 61

    鲍贤勇, 曾美琴, 鲁忠臣, 等. 烧结温度对Ti(C, N)基金属陶瓷组织及力学性能的影响. 材料热处理学报, 2017, 38(5): 61
    [12] Yun H, Zou B, Wang J. Effects of sintering temperature and nano Ti(C, N) on the microstructure and mechanical properties of Ti(C, N) cermets cutting tool materials with low Ni−Co. Mater Sci Eng A, 2017, 705: 98 doi: 10.1016/j.msea.2017.08.033
    [13] Clegg W J, Kendall K, Alford N M, et al. A simple way to make tough ceramics. Nature, 1990, 347: 455 doi: 10.1038/347455a0
    [14] Gao J J, Song J P, Wang Y, et al. Microstructures and mechanical properties of functionally graded TiCN−TaC ceramics prepared by a novel layer processing strategy. Ceram Int, 2022, 48(12): 16990 doi: 10.1016/j.ceramint.2022.02.254
    [15] Chen B S, Xiao G C, Yi M D, et al. Structural design and toughening mechanism of laminated graphene ceramic tool materials. Ceram Int, 2021, 47(22): 32264 doi: 10.1016/j.ceramint.2021.08.121
    [16] Wang Z, Gao J J, Wang Y, et al. Effect of layer thickness on microstructure and mechanical properties of TiC-HfN/TiC-HfC laminated ceramics. Hot Working Technol, 2024(4): 58

    王卓, 高姣姣, 王瑶, 等. 层厚对TiC-HfN/TiC-HfC层状陶瓷微观组织及力学性能的影响. 热加工工艺, 2024(4): 58
    [17] Song Y J, Yi M D, Zhang G Q, et al. Design and synthesis of a novel ceramic coating-like tool material. Ceram Int, 2021, 47(3): 4206 doi: 10.1016/j.ceramint.2020.09.299
    [18] Gao J J. Study on TiCN-Based Ceramic Tool with A Core-Rim and Particle Dispersion Microstructure and Tool Cutting Performance [Dissertation]. Taiyuan: Taiyuan University of Technology, 2020

    高姣姣. 芯-壳与颗粒弥散共存型TiCN基陶瓷刀具及其切削性能研究[学位论文]. 太原: 太原理工大学, 2020
    [19] Wang A J. First-Principles Calculations on the Thermodynamic and Mechanical Properties of Ti-Al-(Zr, Hf)-N Wear-Resistant Coating Systems [Dissertation]. Changsha: Central South University, 2012

    王爱军. Ti-Al-(Zr, Hf)-N耐磨涂层的热力学及力学性质的第一原理计算[学位论文]. 长沙: 中南大学, 2012
    [20] China State Bureau of Technological Supervision. GB/T6569-2006 Chinese National Standards-Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method For Flexural Strength of Monolithic Ceramics at Room Temperature. Beijing: Standards Press of China, 2006

    中国国家标准化管理委员会. GB/T6569-2006精细陶瓷弯曲强度试验方法. 北京: 中国标准出版社, 2006
    [21] China State Bureau of Technological Supervision. GB/T16534-2009 Chinese National Standards-Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method for Hardness of Monolithic Ceramics at Room Temperature. Beijing: Standards Press of China, 2009

    中国国家标准化管理委员会. 精细陶瓷室温硬度试验方法 GB/T16534-2009. 北京: 中国标准出版社, 2009
    [22] Gao J J, Jiang L K, Song J P, et al. Effects of TiC Content on the microstructure and mechanical property of WC−TiC−TaC cemented carbides. J Inorg Mater, 2017, 32(8): 891 doi: 10.15541/jim20160633
    [23] Zhao L B, Lin N, Han X Q, et al. Influence of microstructure evolution on mechanical properties, wear resistance and corrosion resistance of Ti(C, N)-based cermet tools with various WC additions. Met Mater Int, 2021, 27: 2773 doi: 10.1007/s12540-020-00614-y
    [24] Song J P, Cao L, Gao J J, et al. Effects of HfN content and metallic additives on the microstructure and mechanical properties of TiC0.7N0.3-based ceramic tool materials. J Alloys Compd, 2018, 753: 85
    [25] Song J P. Study on Titanium Diboride Matrix Composite Ceramic Tool Materials and Tool Failure Mechanisms [Dissertation]. Jinan: Shandong University, 2012

    宋金鹏. 硼化钛基复相陶瓷刀具及其失效机理研究[学位论文]. 济南: 山东大学, 2012
    [26] Li J P, Meng S H, Han J C, et al. Valence electron structure and properties of HfC1− xN x solid solutions. Rare Met Mater Eng, 2007(4): 569 doi: 10.3321/j.issn:1002-185X.2007.04.002

    李金平, 孟松鹤, 韩杰才, 等. HfC1− xN x固溶体的价电子结构与性能. 稀有金属材料与工程, 2007(4): 569 doi: 10.3321/j.issn:1002-185X.2007.04.002
    [27] Zhang G S, Ji W B, Dai S J, et al. Microstructure and mechanical properties of microwave sintered Ti(C, N)-WC-Al2O3/Ti(C, N)-WC laminated ceramics. J Chin Ceram Soc, 2022, 50(12): 3212

    张广森, 季文彬, 戴士杰, 等. 微波烧结Ti(C, N)-WC-Al2O3/Ti(C, N)-WC叠层陶瓷的微观结构和力学性能. 硅酸盐学报, 2022, 50(12): 3212
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  21
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-25
  • 刊出日期:  2024-04-29

目录

    /

    返回文章
    返回