纳米 ZrC 粉末对 90W−7Ni−3Fe 合金组织及性能影响

苏旭文 何志 闫树欣 董龙龙 孙国栋

苏旭文, 何志, 闫树欣, 董龙龙, 孙国栋. 纳米 ZrC 粉末对 90W−7Ni−3Fe 合金组织及性能影响[J]. 粉末冶金技术.
引用本文: 苏旭文, 何志, 闫树欣, 董龙龙, 孙国栋. 纳米 ZrC 粉末对 90W−7Ni−3Fe 合金组织及性能影响[J]. 粉末冶金技术.
SU Xuwen, HE Zhi, YAN Shuxin, DONG Longlong, SUN Guodong. Effect of nano-ZrC powders on microstructure and properties of 90W−7Ni−3Fe alloys[J]. Powder Metallurgy Technology.
Citation: SU Xuwen, HE Zhi, YAN Shuxin, DONG Longlong, SUN Guodong. Effect of nano-ZrC powders on microstructure and properties of 90W−7Ni−3Fe alloys[J]. Powder Metallurgy Technology.

纳米 ZrC 粉末对 90W−7Ni−3Fe 合金组织及性能影响

基金项目: 陕西省创新能力支撑计划资助项目)(2023KJXX-096);陕西省科协青年人才托举计划资助项目(2021-1-2)
详细信息
    通讯作者:

    E-mail: guodongsun@qq.com

  • 中图分类号: TG146.4+11; TF125

Effect of nano-ZrC powders on microstructure and properties of 90W−7Ni−3Fe alloys

More Information
  • 摘要: 为了有效抑制液相烧结下钨晶粒长大,通过1500 ℃液相烧结制备了ZrC弥散强化重钨合金(WHAs),分析了ZrC质量分数(1%、2%)对WHAs组织以及性能的影响。结果表明,随ZrC质量分数的增加,WHAs相对密度和W−W连接度下降,钨晶粒得到一定程度的细化。当ZrC质量分数为1%时,WHAs强塑性匹配效果最好,合金的相对密度达到了98.4%,钨晶粒尺寸为22.17 μm,屈服强度和抗压强度(40%变形量)分别达到了791 MPa和2179 MPa,相比未添加ZrC的WHAs分别提升了8.35%和38.70%(730 MPa和1570 MPa)。
  • 图  1  粉末原料显微形貌:(a)W;(b)NiO;(c)Fe2O3;(d)ZrC

    Figure  1.  SEM images of the powder raw materials: (a) W; (b) NiO; (c) Fe2O3; (d) ZrC

    图  2  添加不同质量分数ZrC的90W−ZrC复合材料粉体显微形貌和能谱分析:(a)0;(b)1%;(c)2%

    Figure  2.  SEM images and EDS patterns of the 90W−ZrC composite powders with different mass fraction of ZrC: (a) 0; (b) 1%; (c) 2%

    图  3  添加不同质量分数ZrC的90W−ZrC复合粉体X射线衍射图谱

    Figure  3.  XRD patterns of the 90W−ZrC composite powders with different mass fraction of ZrC

    图  4  90W−ZrC合金相对密度和W−W连接度

    Figure  4.  Relative density and the W−W contiguity of the 90W−ZrC alloys

    图  5  添加不同质量分数ZrC的90W−ZrC合金X射线衍射图谱

    Figure  5.  XRD patterns of the 90W−ZrC alloys with different mass fraction of ZrC

    图  6  添加不同质量分数ZrC的90W−ZrC显微形貌和能谱分析:(a)0;(b)1%;(c)2%

    Figure  6.  SEM images and EDS patterns of the 90W−ZrC alloys with different mass fraction of ZrC: (a) 0; (b) 1%; (c) 2%

    图  7  添加不同质量分数ZrC的90W−ZrC合金中W晶粒尺寸分布:(a)0;(b)1%;(c)2%

    Figure  7.  W grain size distribution in the 90W−ZrC alloys with different mass fraction of ZrC: (a) 0; (b) 1%; (c) 2%

    图  8  90W−ZrC合金压缩屈服强度与硬度:(a)屈服强度曲线;(b)平均硬度

    Figure  8.  Compressive yield strength and hardness of the 90W−ZrC alloys: (a) yield strength curves; (b) average hardness

    图  9  添加不同质量分数ZrC的90W−ZrC合金断口形貌:(a)0;(b)1%;(c)2%

    Figure  9.  Fracture morphology of the 90W−ZrC alloys with different mass fraction of ZrC: (a) 0; (b) 1%; (c) 2%

    表  1  粉末原料晶粒尺寸及纯度

    Table  1.   Grain size and purity of the raw material powders

    原料晶粒尺寸 / nm纯度 / %
    W100~200>99.9
    NiO50~100>99.9
    Fe2O350~100>99.9
    ZrC50~100>99.9
    下载: 导出CSV

    表  2  90W−ZrC合金晶粒尺寸及力学性能

    Table  2.   Grain size and mechanical properties of the 90W−ZrC alloys

    合金相对密度 / %平均晶粒尺寸 / μmW−W连接度平均硬度,HV压缩屈服强度 / MPa抗压强度 / MPa
    90W99.0±0.1423.770.431±0.027302.4±7.37301570(40%变形)
    90W−1%ZrC98.4±0.2122.170.414±0.022351.3±8.77912179(40%变形)
    90W−2%ZrC97.6±0.2420.690.407±0.0283380.9±9.48611679(25%变形)
    下载: 导出CSV
  • [1] Miao S, Xie Z M, Zeng L F, et al. The mechanical properties and thermal stability of a nanostructured carbide dispersion strengthened W−0.5 wt.% Ta−0.01 wt.% C alloy. Fusion Eng Des, 2017, 125: 490
    [2] Xu L, Xiao F, Wei S, et al. Development of tungsten heavy alloy reinforced by cubic zirconia through liquid-liquid doping and mechanical alloying methods. Int J Refract Met Hard Mater, 2019, 78: 1 doi: 10.1016/j.ijrmhm.2018.08.009
    [3] German R M. Lower sintering temperature tungsten alloys for space research. Int J Refract Met Hard Mater, 2015, 53: 74 doi: 10.1016/j.ijrmhm.2015.04.020
    [4] Chuvildeev V N, Nokhrin A V, Boldin M S, et al. Impact of mechanical activation on sintering kinetics and mechanical properties of ultrafine-grained 95W−Ni−Fe tungsten heavy alloys. J Alloys Compd, 2019, 773: 666 doi: 10.1016/j.jallcom.2018.09.176
    [5] Islam S, Qu X, Askari S, et al. Effect of microstructural parameters on the properties of W−Ni−Fe alloys. Rare Met, 2007, 26(3): 200 doi: 10.1016/S1001-0521(07)60201-0
    [6] Deng N, Li J, Wang Y, et al. Microstructure and mechanical properties of liquid–phase sintered W@NiFe composite powders. Int J Refract Met Hard Mater, 2021, 95: 105447 doi: 10.1016/j.ijrmhm.2020.105447
    [7] Li Z B, Zhang H, Chen B, et al. Microstructure and mechanical properties of Al2O3 dispersed fine-grained medium heavy alloys with a superior combination of strength and ductility. Mater Sci Eng A, 2021, 817: 141376 doi: 10.1016/j.msea.2021.141376
    [8] Xiang D P, Ding L. Research progress of alloying elements or oxides strengthened W−Ni−Fe heavy alloys. Chin J Nonferrous Met, 2013, 23(6): 1549 doi: 10.1016/S1003-6326(13)62629-1

    向道平, 丁雷. 合金元素或氧化物强化W−Ni−Fe高密度合金的研究进展. 中国有色金属学报, 2013, 23(6): 1549 doi: 10.1016/S1003-6326(13)62629-1
    [9] Li Z B, Wang Y, Zhang H, et al. Effect of ZrB2 addition on microstructure evolution and mechanical properties of 93 wt.% tungsten heavy alloys. Mater Sci Eng A, 2021, 825: 141870
    [10] Li P F, Fan J L, Han Y, et al. Microstructure evolution and properties of tungsten reinforced by additions of ZrC. Rare Met Mater Eng, 2018, 47(6): 1695 doi: 10.1016/S1875-5372(18)30152-8
    [11] Li P F, Fan J L, Han Y, et al. Toughening mechanisms and interfacial bonding of W−ZrC composites. Rare Met Mater Eng, 2019, 48(3): 751
    [12] Yang W T, Xue B, Dai Y F, et al. Effect of milling time on the particle size distribution and morphology of tungsten powders. Powder Metall Technol, 2021, 39(5): 423 doi: 10.19591/j.cnki.cn11-1974/tf.2020020010

    杨文涛, 薛冰, 代永富, 等. 球磨时间对钨粉粒度分布及形貌影响. 粉末冶金技术, 2021, 39(5): 423 doi: 10.19591/j.cnki.cn11-1974/tf.2020020010
    [13] Ma Y Z, Huang B Y, Fan J L, et al. Preparation of nano-sized W−Ni−Fe composite powder. Powder Metall Technol, 2005, 23(1): 40 doi: 10.3321/j.issn:1001-3784.2005.01.008

    马运柱, 黄伯云, 范景莲, 等. 纳米级W−Ni−Fe复合粉末的制备. 粉末冶金技术, 2005, 23(1): 40 doi: 10.3321/j.issn:1001-3784.2005.01.008
    [14] Luo C L, Wang J X, Sun G Y, et al. Influence of coarse tungsten powder on sintering warpage, structure and properties of 90W−Ni−Fe tungsten heavy alloy. Powder Metall Technol, 2016, 34(3): 199 doi: 10.3969/j.issn.1001-3784.2016.03.008

    罗崇玲, 王建新, 孙改云, 等. 粗颗粒钨粉对90W−Ni−Fe钨合金烧结变形与组织性能的影响. 粉末冶金技术, 2016, 34(3): 199 doi: 10.3969/j.issn.1001-3784.2016.03.008
    [15] Lee J S, Kim T H, Yu J H, et al. In-situ alloying on synthesis of nanosized Ni−Fe powder. Nanostruct Mater, 1997, 9(1-8): 153 doi: 10.1016/S0965-9773(97)00041-X
    [16] Hu K, Li X, Ai X, et al. Fabrication, characterization, and mechanical properties of 93W–4.9Ni–2.1Fe/95W–2.8Ni–1.2Fe–1Al2O3 heavy alloy composites. Mater Sci Eng A, 2015, 636: 452
    [17] Li Z B, Zhang H, Zhang G H, et al. Fabrication and characterization of tungsten heavy alloys with high W content by powder metallurgy. Metall Mater Trans A, 2022, 53(3): 1085 doi: 10.1007/s11661-021-06579-w
    [18] Zhang X, Zhu S, Zhang B, et al. Effect of Y2O3 addition on the microstructure, wear resistance, and corrosion behavior of W−4.9Ni−2.1Fe heavy alloy. J Mater Eng Perform, 2019, 28(8): 4801
    [19] Lee K H, Cha S I, Ryu H J, et al. Effect of oxide dispersoids addition on mechanical properties of tungsten heavy alloy fabricated by mechanical alloying process. Mater Sci Eng A, 2007, 452-453: 55 doi: 10.1016/j.msea.2006.10.155
    [20] Hu K, Li X, Guan M, et al. Dynamic deformation behavior of 93W−5.6Ni−1.4Fe heavy alloy prepared by spark plasma sintering. J Refract Met Hard Mater, 2016, 58: 117
    [21] Gong X, Fan J L, Ding F. Tensile mechanical properties and fracture behavior of tungsten heavy alloys at 25–1100 °C. Mater Sci Eng A, 2015, 646: 315 doi: 10.1016/j.msea.2015.08.079
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  25
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-26

目录

    /

    返回文章
    返回