诱导Cu含量对Mo–Cu复合材料微观组织及热性能的影响

仵明杰 张信哲 赵建国 赵元超 张怀龙 郭亚杰

仵明杰, 张信哲, 赵建国, 赵元超, 张怀龙, 郭亚杰. 诱导Cu含量对Mo–Cu复合材料微观组织及热性能的影响[J]. 粉末冶金技术.
引用本文: 仵明杰, 张信哲, 赵建国, 赵元超, 张怀龙, 郭亚杰. 诱导Cu含量对Mo–Cu复合材料微观组织及热性能的影响[J]. 粉末冶金技术.
WU Mingjie, ZHANG Xinzhe, ZHAO Jianguo, ZHAO Yuanchao, ZHANG Huailong, GUO Yajie. Effects of induced Cu content on the microstructure and thermal properties of Mo–Cu composites[J]. Powder Metallurgy Technology.
Citation: WU Mingjie, ZHANG Xinzhe, ZHAO Jianguo, ZHAO Yuanchao, ZHANG Huailong, GUO Yajie. Effects of induced Cu content on the microstructure and thermal properties of Mo–Cu composites[J]. Powder Metallurgy Technology.

诱导Cu含量对Mo–Cu复合材料微观组织及热性能的影响

基金项目: 陕西省重点研发计划一般项目(2021GY-211);西安市先进制造业技术攻关项目(2021JH-06-0047);长安大学中央高校基本科研业务费专项资金资助项目(300102501102);陕西省重点研发计划一般项目(2024GX-YBXM-352);西安市重点产业链关键核心技术攻关项目(23LLRH0004);西安市先进制造业技术攻关项目(2021JH-06-0047)
详细信息
    通讯作者:

    E-mail: yjguo@chd.edu.cn

  • 中图分类号: TF124

Effects of induced Cu content on the microstructure and thermal properties of Mo–Cu composites

More Information
  • 摘要: 采用诱导熔渗法制备Mo–Cu复合材料,通过调节诱导Cu质量分数(0~30%)制备出不同Cu含量的Mo–Cu复合材料,研究诱导Cu含量对复合材料微观形貌和性能的影响。结果表明:诱导Cu含量显著影响Mo–Cu复合材料的微观组织,当诱导Cu质量分数由0%逐步增加至20%,复合材料的孔隙大幅减少,Mo、Cu两相分布更加均匀,组织内单相偏聚的现象减少;但当诱导Cu质量分数达30%时,复合材料组织均匀性变差,孔隙数量不降反升。Mo–Cu复合材料的电导率和热导率随着复合材料中最终Cu含量的增加而增大。当最终Cu质量分数为40.46%时,复合材料的相对密度最大,为98.1%,对应的电导率和热导率也达到最高值,分别为52.69 %IACS和203.94 W·m−1·K−1。但另一方面,复合材料的热膨胀系数随最终Cu含量的增加也随之增大。在调控诱导Cu含量的基础上,探寻适宜的熔渗工艺,有望制备出综合性能更佳的Mo–Cu复合材料。
  • 图  1  粉末的微观形貌:(a)Mo粉;(b)Cu粉

    Figure  1.  Micromorphology of powder: (a) Mo powder; (b) Cu powder

    图  2  不同质量分数诱导Cu熔渗后所得Mo–Cu复合材料的显微组织形貌:(a)0%;(b)10%;(c)20%;(d)30%

    Figure  2.  Microstructure of Mo–Cu composites with different induced copper content: (a) 0%; (b) 10%; (c) 20%; (d) 30%

    图  3  诱导Cu质量分数为20%试样的能谱图:(a)铜;(b)钼

    Figure  3.  EDS diagram of the sample with induced Cu content of 20%: (a) Cu; (b) Mo

    图  4  图2(c)P点的元素能谱图(a)和X射线衍射图谱(b)

    Figure  4.  The elemental energy spectrum and XRD pattern of P point in Fig.2 (c)

    图  5  不同诱导Cu含量试样的相对密度和最终Cu含量

    Figure  5.  The relative density and final Cu content diagram of samples with different induced Cu content

    图  6  不同质量分数诱导Cu试样的断口组织形貌图:(a)0%;(b)10%;(c)20%;(d)30%

    Figure  6.  Fracture morphology of samples with different induced copper content: (a) 0%; (b) 10%; (c) 20%; (d) 30%

    图  7  不同Cu含量试样的电导率和热导率

    Figure  7.  Conductivity and thermal conductivity of samples with different copper content

    图  8  不同Cu含量试样的热膨胀系数

    Figure  8.  Thermal expansion coefficient of samples with different copper content

  • [1] Song P, Li D, Han R R, et al. Effects of surface state for Mo–Cu interlayer materials on interface bonding of multi-layer Cu/MoCu/Cu composites. Powder Metall Technol, 2023, 41(3): 249

    宋鹏, 李达, 韩蕊蕊, 等. Mo–Cu芯材表面状态对多层Cu/MoCu/Cu复合材料界面结合的影响. 粉末冶金技术, 2023, 41(3): 249
    [2] Zhang X H, Wang Q. Research state of metal-matrix composites for electronic packaging. Micronanoelectr Technol, 2018, 55(1): 18

    张晓辉, 王强. 电子封装用金属基复合材料的研究现状. 微纳电子技术, 2018, 55(1): 18
    [3] Zhao H, Yang Q L, Zhuang F, et al. Effecting Factors of Mo–Cu Alloy Infiltration Processing. China Molybd Ind, 2019, 43(2): 52

    赵虎, 杨秦莉, 庄飞, 等. Mo–Cu合金熔渗工艺影响因素研究. 中国钼业, 2019, 43(2): 52
    [4] Sun A K, Wang D Z, Li Y. Mechanochemical synthesis of Mo–Cu nanocomposites powders at low temperature. Rare Met Mater Eng, 2012, 41(4): 722

    孙翱魁, 王德志, 李翼. 低温机械化学法制备Mo–Cu纳米复合粉末. 稀有金属材料与工程, 2012, 41(4): 722
    [5] Wan L, Cheng J G, Song P, et al. Synthesis and characterization of W–Cu nanopowders by a wet-chemical method. Int J Refract Met Hard Mater, 2011, 29(4): 429 doi: 10.1016/j.ijrmhm.2011.01.006
    [6] Cai J N, Wang J Z, Zhang W. Effects of agglomeration on microstructure of infiltrating Mo–Cu alloy. Hot Work Technol, 2017, 46(24): 55

    才剑楠, 王敬泽, 张伟. 团聚对熔渗Mo–Cu合金显微组织的影响. 热加工工艺, 2017, 46(24): 55
    [7] Wu M M, Li L P, Gao X Q. Research progress of molybdenum-based composites prepared by powder metallurgy technology. Powder Metall Technol, 2021, 39(5): 462

    吴明明, 李来平, 高选乔, 等. 粉末冶金技术制备钼基复合材料研究进展. 粉末冶金技术, 2021, 39(5): 462
    [8] Zhang Q, Cai Y F, Li X J, et al. Research progress of molybdenum alloys prepared by powder metallurgy. Powder Metall Technol, 2023, 41(1): 44

    张强, 蔡永丰, 李晓静, 等. 钼合金粉末冶金研究进展. 粉末冶金技术, 2023, 41(1): 44
    [9] Zhang B, Liu P R, Zhang Z J, et al. Thermal deformation behavior and processing map of W80–Cu20 composite by hot compressing. Rare Met Mater Eng, 2022, 51(1): 203

    张兵, 刘鹏茹, 张志娟, 等. W80–Cu20复合材料热变形行为及加工图研究. 稀有金属材料与工程, 2022, 51(1): 203
    [10] Srivastav A K, Chawake N, Yadav D, et al. Localized pore evolution assisted densification during spark plasma sintering of nanocrystalline W–5wt.%Mo alloy. Scripta Mater, 2019, 159: 41 doi: 10.1016/j.scriptamat.2018.09.013
    [11] Wei C L, Cheng J G, Zhang M, et al. Fabrication of diamond/W–Cu functionally graded material by microwave sintering. Nuclear Eng Technol, 2022, 54(3): 975 doi: 10.1016/j.net.2021.08.035
    [12] Han S L, Song Y Q, Cui S, et al. Sintering mechanism of Mo–Cu composites. Chin J Rare Met, 2009, 33(1): 53

    韩胜利, 宋月清, 崔舜, 等. Mo–Cu复合材料的烧结机制研究. 稀有金属, 2009, 33(1): 53
    [13] Liu B, Bai P K, Cheng J. Microstructure evolution of Mo-based composites during selective laser sintering and thermal processing. J Comput Theoret Nanosci, 2008, 5(8): 1565 doi: 10.1166/jctn.2008.825
    [14] Liu J Z, Dou M J, Xiang T X, et al. Study on the lnfluencing factors of properties of diamond–WC–Co cemented carbide composites prepared by liquid phase sintering. Cement Carb, 2023, 40(1): 59

    刘靖忠, 窦明见, 向天翔, 等. 液相烧结法制备金刚石–WC–Co硬质合金复合材料性能影响因素的研究. 硬质合金, 2023, 40(1): 59
    [15] Wang R H, Yang J, Zou D N, et al. Recent progress on microwave sintering of metal materials. Mater Rep, 2021, 35(23): 23153

    王瑞虎, 杨军, 邹德宁, 等. 金属材料微波烧结技术的研究进展. 材料导报, 2021, 35(23): 23153
    [16] Wang X G, Zhang H L, Li W J, et al. Effect of preparation process on microstructure and arc-erosion resistance of WCu30 alloy. Rare Met Mater Eng, 2015, 44(1): 140

    王新刚, 张怀龙, 李文静, 等. 制备工艺对WCu30合金的显微组织及抗电弧烧蚀性能的影响. 稀有金属材料与工程, 2015, 44(1): 140
    [17] Han R R, Li D, Liang L H, et al. Effect of powder on uniformity of molybdenum copper alloy with high copper content. Powder Metall Ind, 2022, 32(4): 117

    韩蕊蕊, 李达, 梁立红, 等. 粉末对高铜含量钼铜合金均匀性的影响. 粉末冶金工业, 2022, 32(4): 117
    [18] Zhang X Z. Study on Rolling Properties of MoCu40 Composites Prepared by Induced Infiltration. [Dissertation]. Xi'an: Chang'an University, 2022

    张信哲. 诱导熔渗法制备Mo–Cu40复合材料及其轧制性能研究[学位论文]. 西安: 长安大学, 2022
    [19] Guo S B, Yi Z Y, Zhang G H, et al. Effect of Cu content on microstructure and mechanical properties of Mo–Cu. Ordn Mater Sci Eng, 2020, 43(6): 17

    郭世柏, 易正翼, 张国辉, 等. Cu含量对Mo–Cu组织和性能的影响. 兵器材料科学与工程, 2020, 43(6): 17
    [20] Chen H P, Cheng J G, Zhang M L, et al. Effect of rare earth oxide addition on the microstructure and properties of ultrafine grain W–20Cu Composites. Rare Met Mater Eng, 2018, 47(9): 2626 doi: 10.1016/S1875-5372(18)30199-1
    [21] Wang J F, Bu C Y, He K, et al. Preparation of ultra-fine molybdenum‒copper composite powders and fine-grained molybdenum‒copper alloys. Powder Metall Technol, 2021, 39(1): 24

    王敬飞, 卜春阳, 何凯, 等. 超细钼铜复合粉体及细晶钼铜合金的制备. 粉末冶金技术, 2021, 39(1): 24
  • 加载中
图(8)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  26
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10

目录

    /

    返回文章
    返回