淬火温度对S590粉末冶金高速钢组织和性能的影响

祁进坤 岳永文 胡剑 赵钢 寇晓磊 齐国强 王宏升 任淑彬

祁进坤, 岳永文, 胡剑, 赵钢, 寇晓磊, 齐国强, 王宏升, 任淑彬. 淬火温度对S590粉末冶金高速钢组织和性能的影响[J]. 粉末冶金技术, 2024, 42(1): 75-83. doi: 10.19591/j.cnki.cn11-1974/tf.2023070003
引用本文: 祁进坤, 岳永文, 胡剑, 赵钢, 寇晓磊, 齐国强, 王宏升, 任淑彬. 淬火温度对S590粉末冶金高速钢组织和性能的影响[J]. 粉末冶金技术, 2024, 42(1): 75-83. doi: 10.19591/j.cnki.cn11-1974/tf.2023070003
QI Jinkun, YUE Yongwen, HU Jian, ZHAO Gang, KOU Xiaolei, QI Guoqiang, WANG Hongsheng, REN Shubin. Effect of quenching temperature on microstructures and mechanical properties of S590 powder metallurgy high speed steels[J]. Powder Metallurgy Technology, 2024, 42(1): 75-83. doi: 10.19591/j.cnki.cn11-1974/tf.2023070003
Citation: QI Jinkun, YUE Yongwen, HU Jian, ZHAO Gang, KOU Xiaolei, QI Guoqiang, WANG Hongsheng, REN Shubin. Effect of quenching temperature on microstructures and mechanical properties of S590 powder metallurgy high speed steels[J]. Powder Metallurgy Technology, 2024, 42(1): 75-83. doi: 10.19591/j.cnki.cn11-1974/tf.2023070003

淬火温度对S590粉末冶金高速钢组织和性能的影响

doi: 10.19591/j.cnki.cn11-1974/tf.2023070003
详细信息
    通讯作者:

    E-mail: sbren@ustb.edu.cn

  • 中图分类号: TF124

Effect of quenching temperature on microstructures and mechanical properties of S590 powder metallurgy high speed steels

More Information
  • 摘要: 采用等离子旋转电极雾化和热等静压法制备S590粉末冶金高速钢,分别在1050、1100、1150和1180 ℃进行淬火热处理,并经过一次550 ℃回火(1 h),一次−196 ℃深冷处理(4 h)和两次550 ℃回火(1 h),研究不同淬火温度对S590粉末冶金高速钢微观组织和力学性能的影响。结果表明:热处理后S590高速钢微观组织主要包括马氏体、M6C型碳化物和MC型碳化物。随淬火温度升高,碳化物逐渐溶入基体中,数量减少,基体晶粒尺寸变大。高速钢硬度和抗压强度随淬火温度升高呈上升趋势,1180 ℃淬火试样经后续热处理后,硬度可达HRC 67.8,抗压强度为3827 MPa;抗弯强度随淬火温度的升高先上升后下降,冲击韧性随淬火温度升高而下降,1100 ℃淬火试样抗弯强度达到最高,为5473 MPa;1050 ℃淬火试样冲击韧性最高,为76.9 J·cm−2。综合考虑显微组织和力学性能,S590粉末冶金高速钢的最优淬火温度为1100 ℃。
  • 图  1  S590高速钢粉末形貌(a)和粒度分布(b)

    Figure  1.  Powder morphology (a) and particle size distribution (b) of S590 HSS

    图  2  不同淬火温度下S590粉末冶金高速钢微观组织:(a)、(b)1050 ℃;(c)、(d)1100 ℃;(e)、(f)1150 ℃;(g)、(h)1180 ℃

    Figure  2.  Microstructure of S590 HSS at the different quenching temperatures: (a), (b) 1050 ℃; (c), (d) 1100 ℃; (e), (f) 1150 ℃; (g), (h) 1180 ℃

    图  3  不同淬火温度下S590粉末冶金高速钢的X射线衍射图谱

    Figure  3.  XRD patterns of S590 HSS at the different quenching temperatures

    图  4  不同淬火温度下S590粉末冶金高速钢抗压强度(a)和应力–应变曲线(b)

    Figure  4.  Compressive strength (a) and stress-strain curve (b) of S590 HSS at the different quenching temperatures

    图  5  不同淬火温度下S590粉末冶金高速钢抗弯强度(a)和应力–应变曲线(b)

    Figure  5.  Bending strength (a) and stress-strain curves (b) of S590 HSS at the different quenching temperatures

    图  6  不同淬火温度下S590粉末冶金高速钢抗弯测试断口形貌:(a)、(b)1050 ℃;(c)、(d)1100 ℃;(e)、(f)1150 ℃;(g)、(h)1180 ℃

    Figure  6.  Bending test fracture morphologies of S590 HSS at different quenching temperatures: (a), (b) 1050 ℃; (c), (d) 1100 ℃; (e), (f) 1150 ℃; (g), (h) 1180 ℃

    图  7  不同淬火温度下S590粉末冶金高速钢的冲击韧性

    Figure  7.  Impact toughness of S590 HSS at the different quenching temperatures

    图  8  不同淬火温度下S590粉末冶金高速钢冲击断口形貌:(a)、(b)1050 ℃;(c)、(d)1100 ℃;(e)、(f)1150 ℃;(g)、(h)1180 ℃

    Figure  8.  Impact fracture morphologies of S590 HSS at the different quenching temperatures: (a), (b) 1050 ℃; (c), (d) 1100 ℃; (e), (f) 1150 ℃; (g), (h) 1180 ℃

    表  1  S590粉末冶金高速钢化学成分(质量分数)

    Table  1.   Chemical composition of S590 HSS %

    CSiMnCrMoWVCoFe
    1.280.600.294.104.886.182.998.17余量
    下载: 导出CSV

    表  2  不同热处理工艺下S590粉末高速钢的硬度

    Table  2.   Hardness of S590 HSS with the different heat treatment processes

    温度 / ℃状态硬度,HRC
    1050一次回火64.2
    110067.5
    115067.4
    118067.8
    1050深冷64.1
    110067.1
    115067.5
    118068.0
    1050二次回火63.5
    110067.1
    115067.9
    118068.0
    1050三次回火63.2
    110066.9
    115066.8
    118067.8
    下载: 导出CSV
  • [1] Wu L Z. Developments and challenges of China high-speed steel industry over last decade // Advanced Steels: The Recent Scenario in Steel Science and Technology. Berlin and Beijing: Springer-Verlag Berlin Heidelberg and Metallurgical Industry Press, 2011: 453
    [2] Godec M, Večko Pirtovšek T, Šetina Batič B, et al. Surface and bulk carbide transformations in high-speed steel. Sci Rep, 2015, 5(1): 16202 doi: 10.1038/srep16202
    [3] Peng H L, Hu L, Ngai T W, et al. Effects of austenitizing temperature on microstructure and mechanical property of a 4-GPa-grade PM high-speed steel. Mater Sci Eng A, 2018, 719: 21 doi: 10.1016/j.msea.2018.02.010
    [4] Wu W D, Xiong X, Liu R T, et al. Effects of carbon content on microstructure and properties of M2 high speed steel prepared by elemental powder method. Mater Sci Eng Powder Metall, 2019, 24(3): 273 doi: 10.3969/j.issn.1673-0224.2019.03.011

    伍文灯, 熊翔, 刘如铁, 等. 碳含量对元素粉末法制备M2高速钢组织与性能的影响. 粉末冶金材料科学与工程, 2019, 24(3): 273 doi: 10.3969/j.issn.1673-0224.2019.03.011
    [5] Xin L X, Liu L X. Microstructure and mechanical properties of high speed steel cutting tools. Foundry Technol, 2018, 39(3): 665

    辛李霞, 刘丽霞. 高速钢刀具组织和力学性能研究. 铸造技术, 2018, 39(3): 665
    [6] Chen Z M, Zhang Q K, Xiao Y F, et al. Effect of hot rotary swaging deformation on microstructure and properties of ASP30 grade powder metallurgical high speed steels strengthened by TiCN. Powder Metall Technol, 2022, 40(4): 376

    陈泽民, 张乾坤, 肖逸锋, 等. 热旋锻变形对TiCN强化ASP30粉末冶金高速钢的组织及性能研究. 粉末冶金技术, 2022, 40(4): 376
    [7] Li X M, Ye J, Zhu Z C. Effect of heat treatment on microstructure and properties of S390 powder metallurgy high speed steel. Mater Mech Eng, 2013, 37(12): 42

    李响妹, 叶俭, 朱祖昌. 热处理工艺对S390粉末高速钢组织和性能的影响. 机械工程材料, 2013, 37(12): 42
    [8] Veerababu R, Prasad K S, Karamched P S, et al. Austenite stability and M2C carbide decomposition in experimental secondary hardening ultra-high strength steels during high temperature austenitizing treatments. Mater Charact, 2018, 144: 191 doi: 10.1016/j.matchar.2018.07.013
    [9] Luo Y W, Guo H J, Sun X L. Precipitation behaviors of carbides in M42 high speed steel during ESR and forging. Iron Steel, 2017, 52(7): 68

    罗乙娲, 郭汉杰, 孙晓林. M42高速钢电渣重熔及锻造退火后碳化物的析出. 钢铁, 2017, 52(7): 68
    [10] Damon J, Schüßler P, Mühl F, et al. Short-time induction heat treatment of high speed steel AISI M2: laboratory proof of concept and application-related component tests. Mater Des, 2023, 230: 111991 doi: 10.1016/j.matdes.2023.111991
    [11] Hou H, Qi L, Zhao Y H. Effect of austenitizing temperature on the mechanical properties of high-strength maraging steel. Mater Sci Eng A, 2013, 587: 209 doi: 10.1016/j.msea.2013.08.070
    [12] Sato K. Improving the Toughness of Ultrahigh Strength Steel [Dissertation]. Berkeley: University of California, 2002
    [13] Wang Y J, Chu S J, Mao B, et al. Microstructure, residual stress, and mechanical property evolution of a spray-formed vanadium-modified high-speed steel processed by post-heat treatment. J Mater Res Technol, 2022, 18: 1521 doi: 10.1016/j.jmrt.2022.03.053
    [14] Jovičević-Klug P, Puš G, Jovičević-Klug M, et al. Influence of heat treatment parameters on effectiveness of deep cryogenic treatment on properties of high-speed steels. Mater Sci Eng A, 2022, 829: 142157 doi: 10.1016/j.msea.2021.142157
    [15] Fantineli D G, Parcianello C T, Rosendo T S, et al. Effect of heat and cryogenic treatment on wear and toughness of HSS AISI M2. J Mater Res Technol, 2020, 9(6): 12354 doi: 10.1016/j.jmrt.2020.08.090
    [16] Liu B W, Lu X, Pi Z Q, et al. Effect of quenching temperature on transformation mechanism of carbides of M42. Rare Met Mater Eng, 2017, 46(3): 829

    刘博文, 路新, 皮自强, 等. M42热处理中淬火温度对碳化物转变机制的影响. 稀有金属材料与工程, 2017, 46(3): 829
    [17] Hao Y F, Cheng G G, Xie Y. Precipitation behavior of carbides in W4Mo3Cr4VSi high-speed steel. Iron Steel, 2018, 53(8): 73

    郝勇飞, 成国光, 谢有. 高速钢W4Mo3Cr4VSi中碳化物的析出行为. 钢铁, 2018, 53(8): 73
    [18] Li Q, Guo B, Wu H, et al. Effects of quenching temperature on the microstructure and properties of M4 powder metallurgy high speed steel. Powder Metall Technol, 2020, 38(3): 183

    李强, 郭彪, 吴辉, 等. 淬火温度对M4粉末高速钢组织和性能的影响. 粉末冶金技术, 2020, 38(3): 183
    [19] Shen Y, Cao R, Yan Y J, et al. Effect of carbides on fracture mechanism of powder metallurgy tool steels. Powder Metall Technol, 2023, 41(4): 296

    沈漪, 曹睿, 闫英杰, 等. 碳化物对粉末冶金刀具钢断裂机理的影响. 粉末冶金技术, 2023, 41(4): 296
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1621
  • HTML全文浏览量:  33
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 刊出日期:  2024-02-28

目录

    /

    返回文章
    返回