EIGA和PREP制备M62轴承钢粉末

祁进坤 岳永文 胡剑 王树立 赵钢 寇晓磊 齐国强 赵京辉 任淑彬

祁进坤, 岳永文, 胡剑, 王树立, 赵钢, 寇晓磊, 齐国强, 赵京辉, 任淑彬. EIGA和PREP制备M62轴承钢粉末[J]. 粉末冶金技术, 2024, 42(2): 144-152. doi: 10.19591/j.cnki.cn11-1974/tf.2023070006
引用本文: 祁进坤, 岳永文, 胡剑, 王树立, 赵钢, 寇晓磊, 齐国强, 赵京辉, 任淑彬. EIGA和PREP制备M62轴承钢粉末[J]. 粉末冶金技术, 2024, 42(2): 144-152. doi: 10.19591/j.cnki.cn11-1974/tf.2023070006
QI Jinkun, YUE Yongwen, HU Jian, WANG Shuli, ZHAO Gang, KOU Xiaolei, QI Guoqiang, ZHAO Jinghui, REN Shubin. Preparation of M62 bearing steel powders by EIGA and PREP[J]. Powder Metallurgy Technology, 2024, 42(2): 144-152. doi: 10.19591/j.cnki.cn11-1974/tf.2023070006
Citation: QI Jinkun, YUE Yongwen, HU Jian, WANG Shuli, ZHAO Gang, KOU Xiaolei, QI Guoqiang, ZHAO Jinghui, REN Shubin. Preparation of M62 bearing steel powders by EIGA and PREP[J]. Powder Metallurgy Technology, 2024, 42(2): 144-152. doi: 10.19591/j.cnki.cn11-1974/tf.2023070006

EIGA和PREP制备M62轴承钢粉末

doi: 10.19591/j.cnki.cn11-1974/tf.2023070006
详细信息
    通讯作者:

    E-mail: sbren@ustb.edu.cn

  • 中图分类号: TF123

Preparation of M62 bearing steel powders by EIGA and PREP

More Information
  • 摘要: 采用电极感应熔炼气雾化法(electrode induction melting gas atomization,EIGA)和等离子旋转电极雾化法(plasma rotating electrode process,PREP)分别制备出了高纯度M62轴承钢粉末,利用激光粒度分析仪、氧氮分析仪、扫描电子显微镜对M62轴承钢粉末的粒径分布、氮氧含量、微观形貌进行了对比分析。结果表明:两种粉末都以球形粉为主,其中PREP制备的粉末(M62-PREP)球形度更高,而EIGA制备的粉末(M62-EIGA)中卫星粉和不规则粉末的比例较多;M62-PREP粉末的中值粒度(D50)为108.11 μm,明显高于M62-EIGA粉末的中值粒度(D50=38.68 μm)。两种粉末成分分布均匀,无明显元素偏析,其中M62-EIGA粉末颗粒内部的晶粒更细,两种粉末都具有良好的流动性。预合金电极棒、M62-PREP粉末、M62-EIGA粉末的N含量(质量分数)分别为0.0070%、0.0072%、0.0068%,N元素的含量变化不大;M62-PREP粉末的O含量(质量分数)由预合金电极棒的0.0008%增加到了0.0035%,而M62-EIGA粉末的O含量增加到了0.0089%,粉末中O含量明显增多。对热等静压后的烧结试样进行了夹杂物分析,M62-EIGA粉末轴承钢中大尺寸含氧夹杂物数量更多,选用M62-PREP粉末轴承钢应有更好的性能。
  • 图  1  PREP和EIGA设备制粉过程:(a)EIGA;(b)PREP

    Figure  1.  Powder preparation by EIGA and PREP: (a) EIGA; (b) PREP

    图  2  M62-PREP和M62-EIGA粉末粒度分布

    Figure  2.  Particle size distribution of the M62-PREP and M62-EIGA powders

    图  3  M62-PREP和M62-EIGA粉末表面形貌:(a)、(b)M62-PREP粉末;(b)、(d)M62-EIGA粉末

    Figure  3.  Surface morphology of the M62-PREP and M62-EIGA powders: (a) and (b) M62-PREP powders; (c) and (d) M62-EIGA powders

    图  4  M62-PREP和M62-EIGA粉末截面形貌:(a)、(b)M62-PREP粉末;(b)、(d)M62-EIGA粉末

    Figure  4.  Cross-sectional morphology of the M62-PREP and M62-EIGA powders: (a) and (b) M62-PREP powders; (c) and (d) M62-EIGA powders

    图  5  PREP和EIGA制备的M62粉末X射线衍射图谱

    Figure  5.  XRD diffraction patterns of the M62 powderd prepared by PREP and EIGA

    图  6  PREP和EIGA制备的M62粉末截面形貌和C、Cr、Fe、V、Mo、W、Co元素能谱分析:(a)、(c)、(e)、(g)、(i)、(k)、(m)、(o)M62-PREP粉末;(b)、(d)、(f)、(h)、(j)、(l)、(n)、(p)M62-EIGA粉末

    Figure  6.  Cross-sectional morphology and EDS analysis (C, Cr, Fe, V, Mo, W, and Co elements) of M62 powders prepared by PREP and EIGA: (a), (c), (e), (g), (i), (k), (m), (o) M62-PREP powders; (b), (d), (f), (h), (j), (l), (n), (p) M62-EIGA powders

    图  7  M62粉末轴承钢试样中不同类型夹杂物形貌:(a)A类夹杂物;(b)B类夹杂物;(c)C类夹杂物;(d)D类夹杂物;(e)Ds类夹杂物

    Figure  7.  Morphology of inclusions in the M62 powder bearing steel samples: (a) class A inclusion; (b) class B inclusion; (c) class C inclusion; (d) class D inclusion; (e) class Ds inclusion

    图  8  M62粉末轴承钢试样夹杂物尺寸与分布:(a)A类夹杂物;(b)B类夹杂物;(c)C类夹杂物;(d)D类夹杂物;(e)Ds类夹杂物

    Figure  8.  Inclusion size and distribution of the M62 powder bearing steel samples: (a) class A inclusion; (b) class B inclusion; (c) class C inclusion; (d) class D inclusion; (e) class Ds inclusion

    表  1  轴承钢预合金电极棒化学成分(质量分数)

    Table  1.   Chemical composition of the bearing steel pre alloy electrode rods %

    CCrMoWVCoFe
    1.243.4511.36.022.000.42余量
    下载: 导出CSV

    表  2  M62-PREP和M62-EIGA轴承钢粉末的工艺性能

    Table  2.   Performance of the M62-PREP and M62-EIGA bearing steel powders

    粉末流动性指数松装密度 / (g·cm−3)振实密度 / (g·cm−3)
    M62-EIGA101(最优)4.9885.631
    M62-PREP98(最优)5.0525.361
    下载: 导出CSV

    表  3  预合金电极棒和轴承钢粉末中N、O质量分数

    Table  3.   N and O mass fraction of the pre-alloy electrode rods and bearing steel powders %

    材料NO
    预合金电极棒0.00700.0008
    M62-PREP粉末0.00720.0035
    M62-EIGA粉末0.00680.0089
    下载: 导出CSV
  • [1] Beswick J M, Zhou X B. Rolling Bearing Comprising a Powder Metallurgical Component: US Patent, 7018107. 2006-3-28
    [2] Li X M, Lu J, Wang Q, et al. Production and research status of powder metallurgy high speed steels in the world. Heat Treat Technol Equip, 2011, 32(5): 34

    李响妹, 卢军, 王琦, 等. 世界粉末冶金高速钢的研究和生产现状. 热处理技术与装备, 2011, 32(5): 34
    [3] Liu D H, Zhao Y J. Analysis and study on crack defect of bearing steel. Steel Roll, 2015, 32(3): 36

    柳东徽, 赵亚娟. 轴承钢裂纹缺陷分析与研究. 轧钢, 2015, 32(3): 36
    [4] Wang K, Hu F, Zhou W, et al. Research status and development trend of bearing steel. China Metall, 2020, 30(9): 119

    王坤, 胡锋, 周雯, 等. 轴承钢研究现状及发展趋势. 中国冶金, 2020, 30(9): 119
    [5] Persson F, Hulme C N, Jönsson P G. Particle morphology of water atomised iron-carbon powders. Powder Technol, 2022, 397: 116993 doi: 10.1016/j.powtec.2021.11.037
    [6] Cui Y J, Zhao Y F, Numata H, et al. Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti−6Al−4V alloy powder. Powder Technol, 2020, 376: 363 doi: 10.1016/j.powtec.2020.08.027
    [7] Walker P F F. Improving the reliability of highly loaded rolling bearings: the effect of upstream processing on inclusions. Mater Sci Technol, 2014, 30(4): 385 doi: 10.1179/1743284713Y.0000000491
    [8] Zhao Q C, Luo H, Pan Z M, et al. Study on mechanical properties of rare earth elements modified high carbon chromium bearing steel. Mater Today Commun, 2023, 34: 105329 doi: 10.1016/j.mtcomm.2023.105329
    [9] Zeng Q, Hui W J, Zhang Y J, et al. Very high-cycle fatigue performance of high carbon-chromium bearing steels with different metallurgical qualities. Int J Fatigue, 2023, 172: 107632 doi: 10.1016/j.ijfatigue.2023.107632
    [10] Li Z, Liu P, Yang C Y, et al. Effect of rare earth elements on microstructure and mechanical properties of bainite/martensite bearing steel. J Mater Res Technol, 2023, 22: 1546 doi: 10.1016/j.jmrt.2022.12.033
    [11] Antony L V M, Reddy R G. Processes for production of high-purity metal powders. JOM, 2003, 55: 14
    [12] Chen G, Zhao S Y, Tan P, et al. A comparative study of Ti−6Al−4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol, 2018, 333: 38 doi: 10.1016/j.powtec.2018.04.013
    [13] Tang J J, Nie Y, Qian L, et al. Characteristics and atomization behavior of Ti−6Al−4V powder produced by plasma rotating electrode process. Adv Powder Technol, 2019, 30(10): 2330 doi: 10.1016/j.apt.2019.07.015
    [14] Yamamoto T D, Takeya H, Saito A T, et al. Magnetocaloric particles of the Laves phase compound HoAl2 prepared by electrode induction melting gas atomization. J Magn Magn Mater, 2022, 547: 168906 doi: 10.1016/j.jmmm.2021.168906
    [15] Liu W S, Duan Y T, Ma Y Z, et al. Surface characterization of plasma rotating electrode atomized 30CrMnSiNi2A steel powder. Appl Surf Sci, 2020, 528: 147004 doi: 10.1016/j.apsusc.2020.147004
    [16] Yu H S, Zhang N N, Zhou G, et al. Physical models for vacuum-induced multistage atomization of high-entropy FeCoCrNiMo alloy powder for 3D printing. J Mater Res Technol, 2023, 24: 5947 doi: 10.1016/j.jmrt.2023.04.167
    [17] Cui B, Zhu Q L, Chen J, et al. Preparation and characterization of Cu6AlNiSnInCe imitation-gold powder by vacuum nitrogen gas atomization for 3D printing. Mater Sci Eng Powder Metall, 2019, 24(1): 1 doi: 10.3969/j.issn.1673-0224.2019.01.001

    崔波, 朱权利, 陈进, 等. 真空氮气雾化法制备3D打印Cu6AlNiSnInCe仿金粉末及表征. 粉末冶金材料科学与工程, 2019, 24(1): 1 doi: 10.3969/j.issn.1673-0224.2019.01.001
    [18] Wei M W, Chen S Y, Liang J, et al. Effect of atomization pressure on the breakup of TA15 titanium alloy powder prepared by EIGA method for laser 3D printing. Vacuum, 2017, 143: 185 doi: 10.1016/j.vacuum.2017.06.014
    [19] Qaddah B, Chapelle P, Bellot J P, et al. Swirling supersonic gas flow in an EIGA atomizer for metal powder production: Numerical investigation and experimental validation. J Mater Process Technol, 2023, 311: 117814 doi: 10.1016/j.jmatprotec.2022.117814
    [20] Zai X F, Chen S Q, Wu H, et al. Preparation of spherical high-purity Zr powders by gas atomization without crucible. Chin J Rare Met, 2018, 42(8): 864

    宰雄飞, 陈仕奇, 吴宏, 等. 无坩埚熔炼气雾化技术制备高纯球形锆粉. 稀有金属, 2018, 42(8): 864
    [21] Tang H P. Progress of plasma rotating electrode processing technology. Powder Metall Technol, 2023, 41(1): 2

    汤慧萍. 等离子旋转电极制粉技术研究进展. 粉末冶金技术, 2023, 41(1): 2
    [22] Sun N G, Chen B K, Xiang C S, et al. The current situation and innovation of plasma rotating electrode processing technology. Powder Metall Ind, 2020, 30(5): 84

    孙念光, 陈斌科, 向长淑, 等. 等离子旋转电极雾化制粉技术现状和创新. 粉末冶金工业, 2020, 30(5): 84
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  14
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-15
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回